We investigate numerically the spin polarization of the current in the
presence of Rashba spin-orbit interaction in a T-shaped conductor proposed by
A.A. Kiselev and K.W. Kim (Appl. Phys. Lett. {\bf 78} 775 (2001)). The
recursive Green function method is used to calculate the three terminal spin
dependent transmission probabilities. We focus on single-channel transport and
show that the spin polarization becomes nearly 100 % with a conductance close
to e2/h for sufficiently strong spin-orbit coupling. This is interpreted
by the fact that electrons with opposite spin states are deflected into an
opposite terminal by the spin dependent Lorentz force. The influence of the
disorder on the predicted effect is also discussed. Cases for multi-channel
transport are studied in connection with experiments