949 research outputs found
The role of avatars in e-government interfaces
This paper investigates the use of avatars to communicate live message in e-government interfaces. A comparative study is presented that evaluates the contribution of multimodal metaphors (including avatars) to the usability of interfaces for e-government and user trust. The communication metaphors evaluated included text, earcons, recorded speech and avatars. The experimental platform used for the experiment involved two interface versions with a sample of 30 users. The results demonstrated that the use of multimodal metaphors in an e-government interface can significantly contribute to enhancing the usability and increase trust of users to the e-government interface. A set of design guidelines, for the use of multimodal metaphors in e-government interfaces, was also produced
Rotation and pseudo-rotation
Eigenvectors of stress-energy tensor (the source in Einstein's equations)
form privileged bases in description of the corresponding space-times. When one
or more of these vector fields are rotating (the property well determined in
differential geometry), one says that the space-time executes this rotation.
Though the rotation in its proper sense is understood as that of a timelike
congruence (vector field), the rotation of a spacelike congruence is not a less
objective property if it corresponds to a canonical proper basis built of the
just mentioned eigenvectors. In this last case, we propose to speak on
pseudo-rotation. Both properties of metric, its material sources, and
space-time symmetries are considered in this paper.Comment: 13 pages, no figures, contains parts of the PhD Thesis of H. Vargas
Rodr\'igue
Nonlinear Lattice Waves in Random Potentials
Localization of waves by disorder is a fundamental physical problem
encompassing a diverse spectrum of theoretical, experimental and numerical
studies in the context of metal-insulator transition, quantum Hall effect,
light propagation in photonic crystals, and dynamics of ultra-cold atoms in
optical arrays. Large intensity light can induce nonlinear response, ultracold
atomic gases can be tuned into an interacting regime, which leads again to
nonlinear wave equations on a mean field level. The interplay between disorder
and nonlinearity, their localizing and delocalizing effects is currently an
intriguing and challenging issue in the field. We will discuss recent advances
in the dynamics of nonlinear lattice waves in random potentials. In the absence
of nonlinear terms in the wave equations, Anderson localization is leading to a
halt of wave packet spreading.
Nonlinearity couples localized eigenstates and, potentially, enables
spreading and destruction of Anderson localization due to nonintegrability,
chaos and decoherence. The spreading process is characterized by universal
subdiffusive laws due to nonlinear diffusion. We review extensive computational
studies for one- and two-dimensional systems with tunable nonlinearity power.
We also briefly discuss extensions to other cases where the linear wave
equation features localization: Aubry-Andre localization with quasiperiodic
potentials, Wannier-Stark localization with dc fields, and dynamical
localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders
We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for
the associated production of a pseudoscalar Higgs boson with a bottom quark via
bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab
Tevatron. We find that the NLO QCD correction in the MSSM reaches
at the LHC and at the Tevatron in our chosen parameter space
Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium
We analyze the end-point region of the photon spectrum in semi-inclusive
radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We
discuss the interplay of the scales arising in the Soft-Collinear Effective
Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy
quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2.
For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be
relevant, but the recently discovered soft-collinear modes show up for 1-z <<
alpha_s^2. The S- and P-wave octet shape functions are calculated. When they
are included in the analysis of the photon spectrum of the Upsilon (1S) system,
the agreement with data in the end-point region becomes excellent. The NRQCD
matrix elements and
are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added.
Journal versio
The Dynamical Behaviour of Test Particles in a Quasi-Spherical Spacetime and the Physical Meaning of Superenergy
We calculate the instantaneous proper radial acceleration of test particles
(as measured by a locally defined Lorentzian observer) in a Weyl spacetime,
close to the horizon. As expected from the Israel theorem, there appear some
bifurcations with respect to the spherically symmetric case (Schwarzschild),
which are explained in terms of the behaviour of the superenergy, bringing out
the physical relevance of this quantity in the study of general relativistic
systems.Comment: 14 pages, Latex. 4 figures. New references added. Typos corrected. To
appear in Int. J. Theor. Phy
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Recent glitches detected in the Crab pulsar
From 2000 to 2010, monitoring of radio emission from the Crab pulsar at
Xinjiang Observatory detected a total of nine glitches. The occurrence of
glitches appears to be a random process as described by previous researches. A
persistent change in pulse frequency and pulse frequency derivative after each
glitch was found. There is no obvious correlation between glitch sizes and the
time since last glitch. For these glitches and
span two orders of magnitude. The pulsar suffered the
largest frequency jump ever seen on MJD 53067.1. The size of the glitch is
6.8 Hz, 3.5 times that of the glitch occured in
1989 glitch, with a very large permanent changes in frequency and pulse
frequency derivative and followed by a decay with time constant 21 days.
The braking index presents significant changes. We attribute this variation to
a varying particle wind strength which may be caused by glitch activities. We
discuss the properties of detected glitches in Crab pulsar and compare them
with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc
- …
