114 research outputs found

    Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight

    Get PDF
    We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel

    Rabies and canine distemper virus epidemics in the red fox population of Northern Italy (2006–2010)

    Get PDF
    Since 2006 the red fox (Vulpes vulpes) population in north-eastern Italy has experienced an epidemic of canine distemper virus (CDV). Additionally, in 2008, after a thirteen-year absence from Italy, fox rabies was re-introduced in the Udine province at the national border with Slovenia. Disease intervention strategies are being developed and implemented to control rabies in this area and minimise risk to human health. Here we present empirical data and the epidemiological picture relating to these epidemics in the period 2006-2010. Of important significance for epidemiological studies of wild animals, basic mathematical models are developed to exploit information collected from the surveillance program on dead and/or living animals in order to assess the incidence of infection. These models are also used to estimate the rate of transmission of both diseases and the rate of vaccination, while correcting for a bias in early collection of CDV samples. We found that the rate of rabies transmission was roughly twice that of CDV, with an estimated effective contact between infected and susceptible fox leading to a new infection occurring once every 3 days for rabies, and once a week for CDV. We also inferred that during the early stage of the CDV epidemic, a bias in the monitoring protocol resulted in a positive sample being almost 10 times more likely to be collected than a negative sample. We estimated the rate of intake of oral vaccine at 0.006 per day, allowing us to estimate that roughly 68% of the foxes would be immunised. This was confirmed by field observations. Finally we discuss the implications for the eco-epidemiological dynamics of both epidemics in relation to control measures

    Kinetics of maternal immunity against rabies in fox cubs (Vulpes vulpes)

    Get PDF
    BACKGROUND: In previous experiments, it was demonstrated that maternal antibodies (maAb) against rabies in foxes (Vulpes vulpes) were transferred from the vixen to her offspring. However, data was lacking from cubs during the first three weeks post partum. Therefore, this complementary study was initiated. METHODS: Blood samples (n = 281) were collected from 64 cubs (3 to 43 days old) whelped by 19 rabies-immune captive-bred vixens. Sera was collected up to six times from each cub. The samples were analysed by a fluorescence focus inhibition technique (RFFIT), and antibody titres (nAb) were expressed in IU/ml. The obtained data was pooled with previous data sets. Subsequently, a total of 499 serum samples from 249 cubs whelped by 54 rabies-immune vixens were fitted to a non-linear regression model. RESULTS: The disappearance rate of maAb was independent of the vixens' nAb-titre. The maAb-titre of the cubs decreased exponentially with age and the half-life of the maAb was estimated to be 9.34 days. However, maAb of offspring whelped by vixens with high nAb-titres can be detected for longer by RFFIT than that of offspring whelped by vixens with relatively low nAb-titres. At a mean critical age of about 23 days post partum, maAb could no longer be distinguished from unspecific reactions in RFFIT depending on the amount of maAb transferred by the mother. CONCLUSIONS: The amount of maAb cubs receive is directly proportional to the titre of the vixen and decreases exponentially with age below detectable levels in seroneutralisation tests at a relatively early age

    Torque Teno Sus Virus (TTSuV) in Cell Cultures and Trypsin

    Get PDF
    Torque teno sus virus (TTSuV), a member of the family Anelloviridae, is a single-stranded, circular DNA virus, widely distributed in swine populations. Presently, two TTSuV genogroups are recognized: Torque teno sus virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2). TTSuV genomes have been found in commercial vaccines for swine, enzyme preparations and other drugs containing components of porcine origin. However, no studies have been made looking for TTSuV in cell cultures. In the present study, a search for TTSuV genomes was carried out in cell culture lineages, in sera used as supplement for cell culture media as well as in trypsin used for cell disaggregation. DNA obtained from twenty-five cell lineages (ten from cultures in routine multiplication and fifteen from frozen ampoules), nine samples of sera used in cell culture media and five batches of trypsin were examined for the presence of TTSuV DNA. Fifteen cell lineages, originated from thirteen different species contained amplifiable TTSuV genomes, including an ampoule with a cell lineage frozen in 1985. Three cell lineages of swine origin were co-infected with both TTSuV1 and TTSuV2. One batch of trypsin contained two distinct TTSuV1 plus one TTSuV2 genome, suggesting that this might have been the source of contamination, as supported by phylogenetic analyses of sequenced amplicons. Samples of fetal bovine and calf sera used in cell culture media did not contain amplifiable TTSuV DNA. This is the first report on the presence of TTSuV as contaminants in cell lineages. In addition, detection of the viral genome in an ampoule frozen in 1985 provides evidence that TTSuV contamination is not a recent event. These findings highlight the risks of TTSuV contamination in cell cultures, what may be source for contamination of biological products or compromise results of studies involving in vitro multiplied cells
    corecore