75 research outputs found

    Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part ІІ: wet/dry indices

    No full text
    Objective of the study is an assessment of possible climate change in the region of the Antarctic Peninsula from 1986 until the end of the 21st century projected by the RCMs’ ensemble. During the last decades Antarctica has undergone predominantly warming, with the highest rate of surface air temperature increase found over the Antarctic Peninsula, where the Ukrainian Antarctic Akademik Vernadsky station is located. There is a unique ecosystem in the region which is vulnerable and under the growing impact of a changing weather regime due to rapid climate changes with consequent changes in sea ice, land distribution under snow/ice, etc. Thus, an important task for the region is an estimation of climate change trends and definition of possible subregionalization.Мета дослідження — оцінка можливої зміни клімату в регіоні Антарктичного півострова до кінця 21 століття за проекціями ансамблю регіональних кліматичних моделей (РКМ). Впродовж останніх десятиліть на переважаючій території Антарктиди спостерігається потепління, воно найінтенсивніше для Антарктичного півострова, де знаходиться Українська антарктична станція «Академік Вернадський». У регіоні існує унікальна екосистема, яка є вразливою до зміни погодного режиму, що відбувається під впливом швидких змін клімату та їхніх наслідків, зокрема, зміни розподілу морського льоду та суші вкритої снігом / льодом тощо. Отже, для регіону важливим завданням є оцінка проекцій зміни клімату з визначенням окремих районів з подібними тенденціями

    Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part 1: cold temperature indices

    No full text
    Objective. This paper deals with an estimation of the climate change at the Antarctic Peninsula region. During last decades, the most significant warming is observed in Polar regions, particularly in the Antarctic Peninsula region, where the Ukrainian Antarctic Akademik Vernadsky station is located. Therefore, the providing of the complex estimation of climate change trend is an important task for the region. These changes are taking place nowadays and will happen in the future. So, the main objective of the study is to estimate changes of climate characteristics in the Antarctic Peninsula region in the 21st century, based on calculation of the relevant climate indices. The projections of the temperature and precipitation characteristics in the Antarctic Peninsula region and Akademik Vernadsky station area for RCP4.5 and RCP8.5 scenarios are the objects of the research.Стаття присвячена оцінці змін, що відбуваються в районі Антарктичного півострова. Впродовж останніх десятиліть найсуттєвіше потепління в кліматичній системі спостерігається в полярних регіонах, зокрема в районі Антарктичного півострова, де розташована Українська антарктична станція «Академік Вернадський». У зв’язку з цим необхідно забезпечити кращу комплексну оцінку тенденцій кліматичних змін, які вже зафіксовані та прогнозуються в майбутньому. Мета дослідження — оцінити зміни кліматичних характеристик в регіоні Антарктичного півострова в ХХІ столітті, на основі обчислення відповідних кліматичних показників. Об’єкт дослідження: проекції характеристик температури повітря та режиму зволоження в районі Антарктичного півострову та Української антарктичної станції «Академік Вернадський» за сценаріями RCP4.5 та RCP8.5 (Representative Concentration Pathway, RCP, Траєкторії репрезентативних концентрацій). Методами дослідження є чисельне моделювання та статистичний аналіз даних регіональних кліматичних моделей

    Vulnerability of Ukrainian forests to climate change

    Get PDF
    Ukraine is a country of the Mid-Latitude ecotone – a transition zone between forest zone and forestless dry lands. Availability of water defines distribution of the country’s forests and decreasing their productivity towards the south. Climate change generates a particular threat for Ukrainian forests and stability of agroforestry landscapes. The paper considers the impacts of expected climate change on vulnerability of Ukrainian forests using ensembles of global and regional climatic models (RCM) based on IPCC Scenarios B1, A2, A1B, and a “dry and warm” scenario A1B+T-P (increasing temperature and decreasing precipitation). The spatially explicit assessment was provided by RCM for the WMO standard period (1961-1990), “recent” (1991-2010) and three future periods – 2011-2030, 2031-2050 and 2081-2100. Forest-climate model by Vorobjov and model of amplitude of flora’s tolerance to climate change by Didukh, as well as a number of specialized climatic indicators, were used in the assessment. Different approaches leads to rather consistent conclusions. Water stress is the major limitation factor of distribution and resilience of flatland Ukrainian forests. Within Scenario A1B, the area with unsuitable growth conditions for major forest forming species will substantially increase by end of the century occupying major part of Ukraine. Scenario A1B+T-P projects even a more dramatic decline of the country’s forests. It is expected that the boundary of conditions that are favorable for forests will shift to north and north-west, and forests of the xeric belt will be the most vulnerable. Consistent policies of adaptation and mitigation might reduce climate-induced risks for Ukrainian forests

    Climate projections over the Antarctic Peninsula region to the end of the 21st century. Part III: clouds and extreme precipitation

    Get PDF
    This paper focuses on the parameters that represent the characteristics of clouds and extreme precipitation events over the Antarctic Peninsula region, where clouds and precipitation play a crucial role in regional climate warming, particularly when a higher fraction of precipitation becomes liquid. In this work, we assess cloud and precipitation properties under climate change over the Antarctic Peninsula region under the Representative Concentrations Pathways (RCP) scenarios using model outputs of the Coordinated Regional Downscaling Experiment for polar regions (Polar CORDEX) for the 21st century. A similar approach was previously applied by authors for estimating projected changes in the temperature regime (Part I) and wet/dry indices (Part II) for the Antarctic Peninsula. We evaluated changes in cloud ice and condensed water contents, spatial distributions of both rain fraction and 95th percentile of total precipitation for the future periods, 2041–2060 and 2081–2100, for RCP4.5, RCP8.5 comparing them to the historical period of 1986–2005. We found that changes in studied parameters have similar tendencies and patterns under both scenarios, with more remarkable changes for the RCP8.5 scenario through the end of the 21st century. Analysis of obtained projections shows that all cloud amounts, liquid content in clouds, the annual fraction of rain in precipitation events, and frequency of extreme precipitation events will increase over the Antarctic Peninsula by the end of the 21st century under both RCP scenarios. The most significant changes are expected for the west coast and over the ocean to the west of the Antarctic Peninsula region, while the lowest changes are projected for the ridge of the Antarctic Peninsula mountains. However, the rates of expected changes vary within the broad Antarctic Peninsula region. While extreme event intensities will increase over the whole area, the changes will be most remarkable over the northwestern slopes of the Antarctic Peninsula, where Akademik Vernadsky station is located

    Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires

    Get PDF
    Funding Information: The study is part of the Enviro–PEEX on the ECMWF (Pan-Eurasian Experiment (PEEX; https://www.atm.helsinki.fi/peex , last access: last access: 8 December 2022) Modelling Platform research and development of online coupled integrated meteorology–chemistry–aerosols feedback and interactions in weather, climate, and atmospheric composition multi-scale modelling) project (2018–2020). The Enviro-HIRLAM model simulations were performed on the CSC (Center for Science Computing) Sisu HPC (Finland) during the Enviro-HIRLAM and HARMONIE research training course at the Institute for Atmospheric and Earth System Research (INAR) of the University of Helsinki (UHEL). The authors also gratefully acknowledge the computer resources and technical support provided by the Center for Science Computing (CSC) HPC (Finland). This study was carried out within the framework of the State Emergency Service of Ukraine and National Academy of Sciences of Ukraine. The work has been partially supported by Academy of Finland via a Flagship programme for Atmospheric and Climate Competence Center (ACCC, 337549) and Academy of Finland projects (334792, 328616, 345510) and European Commission via a project “Non-CO Forcers and Their Climate, Weather, Air Quality and Health Impacts”, (FOCI) and the project “Research Infrastructures Services Reinforcing air quality monitoring capacities in European URBAN & Industrial areaS” (RI-URBANS), no. 101036245. Funding Information: This research has been supported by a grant within the ENVRIplus project for multi-domain access to RI platforms (H2020-INFRAIA-2014-2015, grant no.: 654182). The work has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897) with the support of the EC Research Innovation Action under the H2020 Programme. Publisher Copyright: © 2022 Copernicus GmbH. All rights reserved.Biomass burning is one of the biggest sources of atmospheric black carbon (BC), which negatively impacts human health and contributes to climate forcing. In this work, we explore the horizontal and vertical variability of BC concentrations over Ukraine during wildfires in August 2010. Using the Enviro-HIRLAM modelling framework, the BC atmospheric transport was modelled for coarse, accumulation, and Aitken mode aerosol particles emitted by the wildfire. Elevated pollution levels were observed within the boundary layer. The influence of the BC emissions from the wildfire was identified up to 550hPa level for the coarse and accumulation modes and at distances of about 2000km from the fire areas. BC was mainly transported in the lowest 3km layer and mainly deposited at night and in the morning hours due to the formation of strong surface temperature inversions. As modelling is the only available source of BC data in Ukraine, our results were compared with ground-level measurements of dust, which showed an increase in concentration of up to 73% during wildfires in comparison to average values. The BC contribution was found to be 10%-20% of the total aerosol mass near the wildfires in the lowest 2km layer. At a distance, BC contribution exceeded 10% only in urban areas. In the areas with a high BC content represented by both accumulation and coarse modes, downwelling surface long-wave radiation increased up to 20Wm-2, and 2m air temperature increased by 1-4°C during the midday hours. The findings of this case study can help to understand the behaviour of BC distribution and possible direct aerosol effects during anticyclonic conditions, which are often observed in mid-latitudes in the summer and lead to wildfire occurrences.Peer reviewe

    Climate change scenarios for an assessment of vulnerability of forests in Ukraine in the 21st century

    Get PDF
    Forests are among the most valuable resources of any country not only as wood, but as a key component of bio-ecological system. Excluding anthropogenic factors, forests are mostly vulnerable by wildfire, droughts, pest invasions, hazardous and extreme weather events, etc. In fact, all these non-anthropogenic impacts could be significantly intensified by projected climate change in the 21st century. That is why future conditions for sustainable forest growth should be evaluated accounting for projected climate change preferably under different scenarios. It is well known that global climate change reveals different regional aspects. Therefore, special scenarios have been elaborated processing data of regional climate models (RCMs) from the FP-6 project ENSEMBLES with spatial resolution of 25 km. Verified over the territory of Ukraine ensembles of 10 RCMs for air temperature and 4 RCMs for precipitation calculated for IPCC scenario A1B, which is characterized by balanced consumption of fossil and renewable energy sources and considered by climate change science as one of most likely future development of the world, were applied. Taking into account that the expected dryness of regional climate could generate major challenges for vulnerability of Ukrainian forests, a modification of A1B scenario that is characterized by increasing temperature and decreasing precipitation (A1B+T-P) was proposed. In overall, the impacts of climate change on Ukrainian forests are diverse dependently upon geographical location, geomorphology and large land forms (mountains, plains), forest types and regimes of forest management. The biggest vulnerability was recognized in forests growing in steppe and southern forest steppe, where there is a high probability of impoverishment, degradation and death of forests over large areas. At the same time, there is also a threat of critical increase of vulnerability in other regions, particularly under more tough scenarios of climate change. The study was supported via the EU-funded ClimaEast project CEEF2015-036-UA “Building capacity for the assessment of vulnerability of Ukraine’s flatland forests to climate change”

    Performance Comparison of Linear and Nonlinear Feature Selection Methods for the Analysis of Large Survey Datasets

    Get PDF
    Large survey databases for aging-related analysis are often examined to discover key factors that affect a dependent variable of interest. Typically, this analysis is performed with methods assuming linear dependencies between variables. Such assumptions however do not hold in many cases, wherein data are linked by way of non-linear dependencies. This in turn requires applications of analytic methods, which are more accurate in identifying potentially non-linear dependencies. Here, we objectively compared the feature selection performance of several frequently-used linear selection methods and three non-linear selection methods in the context of large survey data. These methods were assessed using both synthetic and real-world datasets, wherein relationships between the features and dependent variables were known in advance. In contrast to linear methods, we found that the non-linear methods offered better overall feature selection performance than linear methods in all usage conditions. Moreover, the performance of the non-linear methods was more stable, being unaffected by the inclusion or exclusion of variables from the datasets. These properties make non-linear feature selection methods a potentially preferable tool for both hypothesis-driven and exploratory analyses for aging-related datasets

    Кліматичні проекції опалювального періоду в Україні до середини ХХІ сторіччя

    Get PDF
    The paper presents projections for the balanced scenario A1B of specialized climatic indicators of the heating period for the territory of Ukraine for decades until the middle of the 21st century. Prediction of mean temperature, duration and heating degree-days are based on calculations of the previously formed and adapted to Ukraine ensemble of 10 regional climate models from the European project ENSEMBLES. The main and specialized climatic indicators calculated on all nodes of a regular grid of 25×25 km were verified by E-Obs data for the period 2001―2010. A negligible bias in the heating period mean temperature (in average less than 0.01°C) and an acceptable bias in duration (with a mean value of less than 6,4 days or <4 %) were found in the verification that resulted in obtaining an average bias in heating degree-days by about 4 %. Forecasting of specialized indicators of the heating season for future periods was performed with corresponding bias corrections. The spatial and temporal changes of heating period indices for the decades to the middle of the 21st century have been analyzed and averaging values for administrative units of Ukraine have been calculated. Obtained insignificant, within the limits of 0―0,2 °С, increase of the mean heating period temperature for most of the country in the modern decade of 2011―2020 in relation to the base period of 2001―2010, reducing the heating period duration by an average of 3 days and reducing values of heating degree-days by 2―3 %. By the middle of the 21st century the mean heating period temperature will increase significantly with maximum values of 1,5 °С in the northeastern, central and eastern parts of the country, and the least increasing of 0,8 °С to the south, southwest and the Crimea. The heating period duration will be reduced by 15―18 days in average, with a maximum of 20 days to the south. The values of heating degree-days will decrease in most areas by 12―16 %, with maximum by 20 % in the Crimea, and the minimum reduction by 9―12 % in the Carpathians. Results obtained in the study may be used, primarily, for the calculation of heating costs and other needs of the energy sector and other national economy sectors for the overall development of infrastructure and other needs of any settlement in the territory of Ukraine.В работе представлен прогноз по сбалансированному сценарию А1В специализированных климатических показателей отопительного периода для территории Украины по десятилетиям до середины XXI ст. Прогноз средней температуры, продолжительности и величины градусо-дней составлен на расчетах ансамбля 10 региональных климатических моделей Европейского проекта ENSEMBLES, предварительно сформированного и адаптированного для Украины. Рассчитаные во всех узлах регулярной сетки 25₅25 км основные и специализированные климатические показатели были верифицированы данными Е-Оbs для периода 2001―2010 гг. Обнаружены незначительная погрешность средней температуры отопительного периода, усредненное значение которой на всей территории меньше 0,01 °С, и приемлемая погрешность продолжительности с усредненным значением менее 6,4 дня (<4 %), что в результате позволило получить осредненную погрешность градусо-дней около 4 %. Прогнозирование на будущие периоды специализированных показателей отопительного сезона проводилось с учетом полученных в базовом периоде ошибок. Проанализированы пространственно-временные изменения показателей отопительного периода по десятилетиям к середине XXI ст. и рассчитаны усредненные значения для административных единиц Украины. Получен несущественный, в пределах 0―0,2 °С, рост средней температуры отопительного периода на большей части территории страны в современном десятилетии 2011―2020 гг. относительно базового периода 2001―2010 гг., сокращение продолжительности отопительного периода в среднем на 3 дня и уменьшение величины градусо-дней на 2―3 %. К середине XXI ст. существенно возрастут средние температуры отопительного периода с максимальными приростами в 1,5 °С на северо-востоке, в центре и на Левобережье и наименьшими, до 0,8 °С, — на юге, юго-западе и в Крыму. Продолжительность периода будет сокращаться на 15―18 суток, максимально на 20 суток на юге. Величины градусо-дней уменьшатся на большей части территории на 12―16 %, максимально в Крыму на 20 %, а минимальное снижение получено для Карпат — 9―12 %. Полученные в исследовании результаты можно использовать прежде всего для проведения расчетов расходов энергии на отопление и прочие потребности энергетического сектора, а также других отраслей экономики для общего развития инфраструктуры и разнообразных потребностей любого населенного пункта на территории Украины.У роботі представлений прогноз щодо збалансованого сценарієм А1В спеціалізованих кліматичних показників опалювального періоду для території України по десятиліттях до середини XXI ст. Прогноз середньої температури, тривалості та величини градусо-днів складено на розрахунках ансамблю 10 регіональних кліматичних моделей Європейського проекту ENSEMBLES, попередньо сформованого і адаптованого для України. Розраховані в усіх вузлах регулярної сітки 25₅25 км основні та спеціалізовані кліматичні показники були верифіковані даними Е-Оbs для періоду 2001-2010 рр. Виявлено незначна похибка середньої температури опалювального періоду, усереднене значення якої на всій території менше 0,01 ° С, і прийнятна похибка тривалості з середнім значенням менше 6,4 дня (<4%), що в результаті дозволило отримати осредненную похибка градусо-днів близько 4%. Прогнозування на майбутні періоди спеціалізованих показників опалювального сезону проводилося з урахуванням отриманих в базовому періоді помилок. Проаналізовано просторово-часові зміни показників опалювального періоду по десятиліттях до середини XXI ст. і розраховані усереднені значення для адміністративних одиниць України. Отримано несуттєвий, в межах 0-0,2 ° С, зростання середньої температури опалювального періоду на більшій частині території країни в сучасному десятилітті 2011-2020 рр. щодо базового періоду 2001-2010 рр., скорочення тривалості опалювального періоду в середньому на 3 дні і зменшення величини градусо-днів на 2-3%. До середини XXI ст. істотно зростуть середні температури опалювального періоду з максимальними приростами в 1,5 ° С на північному сході, в центрі і на Лівобережжі та найменшими, до 0,8 ° С, - на півдні, південному заході та в Криму. Тривалість періоду буде скорочуватися на 15-18 діб, максимально на 20 діб на півдні. Величини градусо-днів зменшаться на більшій частині території на 12-16%, максимально в Криму на 20%, а мінімальне зниження отримано для Карпат - 9-12%. Отримані в дослідженні результати можна використовувати перш за все для проведення розрахунків витрат енергії на опалення та інші потреби енергетичного сектора, а також інших галузей економіки для загального розвитку інфраструктури та різноманітних потреб будь-якого населеного пункту на території України

    Compound drivers behind new record high temperatures and surface melt at the Antarctic Peninsula in February 2022

    Get PDF
    The Antarctic Peninsula (AP) experienced a new extreme warm event and record high surface melt inFebruary 2022, rivaling the recent temperature records from 2015 and 2020, and contributing to analarming series of extreme warm events there. The northern/northwestern AP was directly impactedby an intense atmospheric river (AR) bringing anomalous heat and rainfall, while AR-enhanced foehneffect further warmed its northeastern side. The event was triggered by multiple large-scaleatmospheric circulation patterns linking the AR formation to tropical convection anomalies andstationary Rossby waves, with anomalous Amundsen Sea low and record-breaking blocking high. Thecascade of impacts culminated in widespread and intensive surface melt across the AP. The event wasstatistically attributed to global warming. Increasing frequency of such events can undermine thestability of the AP ice shelves, with multiple local to global impacts, including acceleration of the APice mass loss and changes in sensitive ecosystems.Fil: Gorodetskaya, Irina. Universidad de Porto; PortugalFil: Durán Alarcón, Claudio. Universidade de Aveiro. Centro de Estudos Do Ambiente E Do Mar.; PortugalFil: Gonzalez Herrero, Sergi. Universidade de Aveiro. Centro de Estudos Do Ambiente E Do Mar.; PortugalFil: Clem, Kyle. Universidad de Porto. Facultad de Ciências. Centro Interdisciplinar de Investigação Marinha E Ambiental.; PortugalFil: Rodriguez Imazio, Paola Carolina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santos, Christophe Leroy Dos. European Southern Observatory Chile.; ChileFil: Campos, Diego Rodrigo. European Southern Observatory Chile.; ChileFil: Zou, Xun. Universidad Mayor de San Andrés; BoliviaFil: Dutrievoz, Niels. Universidad Nacional San Antonio Abad del Cusco; PerúFil: Rowe, Penny. Washington State University. School Of Earth & Environmental Sciences; Estados UnidosFil: Wille, Jonathan. Universidad Mayor de San Andrés; BoliviaFil: Favier, Vincent. Laboratoire D´ Oceanographie Et Climat, Experimentation Et Approches Numerique ; Institut Pierre Simon la Place ; Campus Pierre Et Marie Curie ; Sorbonne University;Fil: Blanchet, Juliette. Universite Grenoble Alpes.; FranciaFil: Chyhareva, Anastasiia. Universidad de Santiago de Chile. Instituto de Estudios de Posgrado E Investigación.; ChileFil: Cordero, Raul. Universidad de Santiago de Chile. Facultad de Ciencias; ChileFil: Park, Sang Jong. Korea Polar Research Institute; Corea del SurFil: Colwell, Steve. British Antartic Survey; Reino UnidoFil: Lazzara, Matthew. University of Wisconsin; Estados UnidosFil: Carrasco, Jorge. Universidad de Magallanes; ChileFil: Gulisano, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Krakovska, Svitlana. Universidad de Santiago de Chile. Facultad de Ciencias; ChileFil: Ralph, F. Martin. University of Washington; Estados UnidosFil: Pohl, Benjamin. Universidad Industrial Santander; Colombi
    corecore