84 research outputs found
An Evolutionary Algorithm to Generate Real Urban Traffic Flows
In this article we present a strategy based on an evolutionary algorithm to calculate the real vehicle ows in cities according to data from sensors placed in the streets. We have worked with a map imported from OpenStreetMap into the SUMO traffic simulator so that the resulting scenarios can be used to perform different optimizations with the confidence of being able to work with a traffic distribution close to reality. We have compared the results of our algorithm to other competitors and achieved results that replicate the real traffic distribution with a precision higher than 90%.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by project number 8.06/5.47.4142 in collaboration with the VSB-Technical University of Ostrava and Universidad de Málaga UMA/FEDER FC14-TIC36, programa de fortalecimiento de las capacidades de I+D+i en las universidades 2014-2015, de la Consejería de Economía, Innovación, Ciencia y Empleo, cofinanciado por el fondo europeo de desarrollo regional (FEDER). Also, partially funded by the Spanish MINECO project TIN2014-57341-R (http://moveon.lcc.uma.es). The authors would like to thank the FEDER of European Union for financial support via project Movilidad Inteligente: Wi-Fi, Rutas y Contaminación (maxCT) of the "Programa Operativo FEDER de Andalucía 2014-2020. We also thank all Agency of Public Works of Andalusia Regional Government staff and researchers for their dedication and professionalism. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish Ministry of Education, Culture and Sports
An Intelligent Advisor for City Traffic Policies
Nowadays, city streets are populated not only by private vehicles but also by public transport, fleets of workers, and deliveries. Since
each vehicle class has a maximum cargo capacity, we study in this article how authorities could improve the road traffic by endorsing long term policies to change the different vehicle proportions: sedans, minivans, full size vans, trucks, and motorbikes, without losing the ability of moving cargo throughout the city. We have performed our study in a realistic scenario (map, road traffic characteristics, and number of vehicles) of the city of Malaga and captured the many details into the SUMO microsimulator. After analyzing the relationship between travel times, emissions, and fuel consumption, we have defined a multiobjective optimization problem to be solved, so as to minimize these city metrics. Our results provide a scientific evidence that we can improve the delivery of goods
in the city by reducing the number of heavy duty vehicles and fostering the use of vans instead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R, TIN2016-81766-REDT, and
TIN2017-88213-R. University of Malaga, Andalucia TECH. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish MECD. Christian Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO
LNCS
A controller is a device that interacts with a plant. At each time point,it reads the plant’s state and issues commands with the goal that the plant oper-ates optimally. Constructing optimal controllers is a fundamental and challengingproblem. Machine learning techniques have recently been successfully applied totrain controllers, yet they have limitations. Learned controllers are monolithic andhard to reason about. In particular, it is difficult to add features without retraining,to guarantee any level of performance, and to achieve acceptable performancewhen encountering untrained scenarios. These limitations can be addressed bydeploying quantitative run-timeshieldsthat serve as a proxy for the controller.At each time point, the shield reads the command issued by the controller andmay choose to alter it before passing it on to the plant. We show how optimalshields that interfere as little as possible while guaranteeing a desired level ofcontroller performance, can be generated systematically and automatically usingreactive synthesis. First, we abstract the plant by building a stochastic model.Second, we consider the learned controller to be a black box. Third, we mea-surecontroller performanceandshield interferenceby two quantitative run-timemeasures that are formally defined using weighted automata. Then, the problemof constructing a shield that guarantees maximal performance with minimal inter-ference is the problem of finding an optimal strategy in a stochastic2-player game“controller versus shield” played on the abstract state space of the plant with aquantitative objective obtained from combining the performance and interferencemeasures. We illustrate the effectiveness of our approach by automatically con-structing lightweight shields for learned traffic-light controllers in various roadnetworks. The shields we generate avoid liveness bugs, improve controller per-formance in untrained and changing traffic situations, and add features to learnedcontrollers, such as giving priority to emergency vehicles
InstAL: An Institutional Action Language
nstAL denotes both a declarative domain-specific language for the specification of collections of interacting normative systems and a framework for a set of associated tools. The computational model is realized by translating the specification language to AnsProlog (Baral 2003), a logic programming language under the answer set semantics (ASP) (Gelfond and Lifschitz 1991), and is underpinned by a set-theoretic formal model and a formalized translation process
Modelling Bluetooth Inquiry for SUMO
SUMO provides an interface for the implementation of arbitrary additional vehicle devices. This paper describes how this interface was used to implement Bluetooth devices with a special focus on the inquiry process and how its modelling relates to real world measurements and a simple analytic model
- …