918 research outputs found

    Feasibility of self-structured current accessed bubble devices in spacecraft recording systems

    Get PDF
    The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies

    TaLoS: secure and transparent TLS termination inside SGX enclaves

    Get PDF
    We introduce TaLoS1, a drop-in replacement for existing transport layer security (TLS) libraries that protects itself from a malicious environment by running inside an Intel SGX trusted execution environment. By minimising the amount of enclave transitions and reducing the overhead of the remaining enclave transitions, TaLoS imposes an overhead of no more than 31% in our evaluation with the Apache web server and the Squid proxy

    Analyticity and criticality results for the eigenvalues of the biharmonic operator

    Full text link
    We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.Comment: To appear on the proceedings of the conference "Geometric Properties for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in Palinuro (Italy), May 25-29, 201

    Classical versus quantum dynamics of the atomic Josephson junction

    Full text link
    We compare the classical (mean-field) dynamics with the quantum dynamics of atomic Bose-Einstein condensates in double-well potentials. The quantum dynamics are computed using a simple scheme based upon the Raman-Nath equations. Two different methods for exciting a non-equilbrium state are considered: an asymmetry between the wells which is suddenly removed, and a periodic time oscillating asymmetry. The first method generates wave packets that lead to collapses and revivals of the expectation values of the macroscopic variables, and we calculate the time scale for these revivals. The second method permits the excitation of a single energy eigenstate of the many-particle system, including Schroedinger cat states. We also discuss a band theory interpretation of the energy level structure of an asymmetric double-well, thereby identifying analogies to Bloch oscillations and Bragg resonances. Both the Bloch and Bragg dynamics are purely quantum and are not contained in the mean-field treatment.Comment: 31 pages, 14 figure

    Lieb-Thirring inequalities for geometrically induced bound states

    Full text link
    We prove new inequalities of the Lieb-Thirring type on the eigenvalues of Schr\"odinger operators in wave guides with local perturbations. The estimates are optimal in the weak-coupling case. To illustrate their applications, we consider, in particular, a straight strip and a straight circular tube with either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page

    Progression to chronic atrial fibrillation after pacing: the Canadian Trial of Physiologic Pacing

    Get PDF
    AbstractOBJECTIVESThis study examined the effect of physiologic pacing on the development of chronic atrial fibrillation (CAF) in the Canadian Trial Of Physiologic Pacing (CTOPP).BACKGROUNDThe role of physiologic pacing to prevent CAF remains unclear. Small randomized studies have suggested a benefit for patients with sick sinus syndrome. No data from a large randomized trial are available.METHODSThe CTOPP randomized patients undergoing first pacemaker implant to ventricular-based or physiologic pacing (AAI or DDD). Patients who were prospectively found to have persistent atrial fibrillation (AF) lasting greater than or equal to one week were defined as having CAF. Kaplan-Meier plots for the development of CAF were compared by log-rank test. The effect of baseline variables on the benefit of physiologic pacing was evaluated by Cox proportional hazards modeling.RESULTSPhysiologic pacing reduced the development of CAF by 27.1%, from 3.84% per year to 2.8% per year (p = 0.016). Three clinical factors predicted the development of CAF: age ≥74 years (p = 0.057), sinoatrial (SA) node disease (p < 0.001) and prior AF (p < 0.001). Subgroup analysis demonstrated a trend for patients with no history of myocardial infarction or coronary disease (p = 0.09) as well as apparently normal left ventricular function (p = 0.11) to derive greatest benefit.CONCLUSIONSPhysiologic pacing reduces the annual rate of development of chronic AF in patients undergoing first pacemaker implant. Age ≥74 years, SA node disease and prior AF predicted the development of CAF. Patients with structurally normal hearts appear to derive greatest benefits

    Risk Factors for CIED Infection After Secondary Procedures

    Get PDF
    OBJECTIVES This study aimed to identify risk factors for infection after secondary cardiac implantable electronic device (CIED) procedures. BACKGROUND Risk factors for CIED infection are not well defined and techniques to minimize infection lack supportive evidence. WRAP-IT (World-wide Randomized Antibiotic Envelope Infection Prevention trial), a large study that assessed the safety and efficacy of an antibacterial envelope for CIED infection reduction, offers insight into procedural details and infection prevention strategies. METHODS This analysis included 2,803 control patients from the WRAP-IT trial who received standard preoperative antibiotics but not the envelope (44 patients with major infections through all follow-up). A multivariate least absolute shrinkage and selection operator machine learning model, controlling for patient characteristics and procedural variables, was used for risk factor selection and identification. Risk factors consistently retaining predictive value in the model (appeared >10 times) across 100 iterations of imputed data were deemed significant. RESULTS Of the 81 variables screened, 17 were identified as risk factors with 6 being patient/device-related (nonmodifiable) and 11 begin procedure-related (potentially modifiable). Patient/device-related factors included higher number of previous CIED procedures, history of atrial arrhythmia, geography (outside North America and Europe), device type, and lower body mass index. Procedural factors associated with increased risk included longer procedure time, implant location (non-left pectoral subcutaneous), perioperative glycopeptide antibiotic versus nonglycopeptide, anticoagulant, and/or antiplatelet use, and capsulectomy. Factors associated with decreased risk of infection included chlorhexidine skin preparation and antibiotic pocket wash. CONCLUSIONS In WRAP-IT patients, we observed that several procedural risk factors correlated with infection risk. These results can help guide infection prevention strategies to minimize infections associated with secondary CIED procedures. (J Am Coll Cardiol EP 2022;8:101-111) (c) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR
    • …
    corecore