7 research outputs found

    Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di-tert-butyliminoborane and Alkynes

    Get PDF
    Di-tert-butyliminoborane is found to be a very useful synthon for the synthesis of a variety of functionalized 1,4-azaborinines by the Rh-mediated cyclization of iminoboranes with alkynes. The reactions proceed via [2 + 2] cycloaddition of iminoboranes and alkynes in the presence of [RhCl(PiPr3)2]2, which gives a rhodium η4-1,2-azaborete complex that yields 1,4-azaborinines upon reaction with acetylene. This reaction is compatible with substrates containing more than one alkynyl unit, cleanly affording compounds containing multiple 1,4-azaborinines. The substitution of terminal alkynes for acetylene also led to 1,4-azaborinines, enabling ring substitution at a predetermined location. We report the first general synthesis of this new methodology, which provides highly regioselective access to valuable 1,4-azaborinines in moderate yields. A mechanistic rationale for this reaction is supported by DFT calculations, which show the observed regioselectivity to arise from steric effects in the B-C bond coupling en route to the rhodium η4-1,2-azaborete complex and the selective oxidative cleavage of the B-N bond of the 1,2-azaborete ligand in its subsequent reaction with acetylene.</p

    N-Heterocyclische Silylene als ambiphile Reagenzien in der Hauptgruppenchemie und als Liganden in der Übergangsmetallchemie

    No full text
    This thesis reports on the applications of a particular N-heterocyclic silylene, Dipp2NHSi (1), as an ambiphilic reagent in main group chemistry and as a ligand in transition metal chemistry. One focus of the work lies in the evaluation of the differences in the reactivity of N-heterocyclic silylenes in main group element and transition metal chemistry in comparison with the in these areas nowadays ubiquitous N-heterocyclic carbenes. The first chapter gives an insight into the reactivity of Dipp2NHSi with respect to different types of main group element compounds. Silylene 1 was reacted with group 13 compounds. Adduct formation was observed with AlI3, Al(C6F5)3 and B(C6F5)3 which led to isolation of Dipp2NHSi·AlI3 (2), Dipp2NHSi·Al(C6F5)3 (3) and Dipp2NHSi·B(C6F5)3 (4). Furthermore, the reactivity of Dipp2NHSi (1) with respect to different elementhalide bonds was investigated. The reaction with elemental bromine and iodine leads to the dihalosilanes Dipp2NHSiBr2 (5) and Dipp2NHSiI2 (6). Utilizing methyl iodide, benzyl chloride and benzyl bromide, the insertion products Dipp2NHSi(I)(Me) (10), Dipp2NHSi(Cl)(benzyl) (11) and Dipp2NHSi(Br)(benzyl) (12) are obtained. Thus, insertion is preferred to reductive coupling with formation of RH2C–CH2R (R = H, Ph) and the corresponding dihalosilane. The reaction of 1 with Me3SnCl leads to the diazabutene {(Me3Sn)N(Dipp)CH}2 (9). The reaction of 1 with Ph2SnCl2 gives exclusively Dipp2NHSiCl2 (8) and cyclic polystannanes (Ph2Sn)n. The reactivity of 1 towards selected 1,3-dipolar compounds was also examined and Dipp2NHSi was reacted with azides of different size. The reaction with adamantyl azide led to the formation of the tetrazoline 13. For the reaction with the sterically less demanding trimethylsilyl azide the azido silane Dipp2NHSi(N(SiMe3)2)(N3) (14) and the degradation product 14* was isolated. The cyclosilamine 15 was formed from the reaction of 1 with 2,6-(diphenyl)phenyl azide. The bonding situation and ligation properties of Dipp2NHSi in transition metal complexes was assessed in the second part of the thesis by means of theoretical calculations and experimental investigations. Calculations on the main electronic features of Me2Im/Me2NHSi and Dipp2NHSi/Dipp2Im revealed significant differences in the frontier orbital region of these compounds, which affect the ligation properties of NHSis in general. It was demonstrated that NHSis show significantly different behaviour concerning their coordination chemistry. In particular, one energetically low lying π-acceptor orbital seems to determine the coordination chemistry of these ligands. To provide experimental support for these calculations, the silylene complexes [M(CO)5(Dipp2NHSi)] (M = Cr 16, Mo 17, W 18) were synthesized from Dipp2NHSi and [M(CO)6] (M = Cr, Mo, W) and the tungsten NHSi complex 18 was compared to the NHC complexes [W(CO)5(iPr2Im)] (19), [W(CO)5(iPr2ImMe)] (20) and [W(CO)5(Me2ImMe)] (21). The bonding of Me2Im and Me2NHSi (= L) to transition metal complexes has been assessed with DFT calculations for the model systems [Ni(L)], [Ni(CO)3(L)], and [W(CO)5(L)]. These studies revealed some common features in the difference between M–NHSi and M–NHC bonding which largely affect the bonding situation in transition metal complexes. NHSis show a propensity for bridging two metal atoms which was demonstrated on three different examples. Dipp2NHSi reacts with [Ni(CO)4] to form the dinuclear silylene-bridged complex [{Ni(CO)2(ÎŒ-Dipp2NHSi)}2] (22) upon CO elimination. The reduction of [Ni(η5-C5H5)2] with lithium naphthalenide in the presence of Dipp2NHSi yielded the NHSi-bridged Ni(I) dimer [{(η5 C5H5)Ni(”-Dipp2NHSi)}2] (23). The dimeric half-sandwich complex [{(η5-C5H5)Fe(CO)2}2] led upon reaction with Dipp2NHSi to the formation of the dinuclear, NHSi-bridged complex [{(η5-C5H5)Fe(CO)}2(”-CO)(”-Dipp2NHSi)] (24). The insertion of Dipp2NHSi into metal halide bonds was investigated in a series of manganese complexes [Mn(CO)5(X)] (X = Cl, Br, I). The reaction of Dipp2NHSi with [Mn(CO)5(I)] led to substitution of two carbonyl ligands with Dipp2NHSi (1) to afford the tricarbonyl complex [Mn(CO)3(Dipp2NHSi)2(I)] (25). In 25, the iodide ligand is aligned in the {Mn(CO)3} plane, located between both NHSi silicon atoms. Treatment of [Mn(CO)5(Br)] with two equivalents of Dipp2NHSi afforded the complex [Mn(CO)3(Dipp2NHSi)2(Br)] (26), in which the bromide ligand is distorted towards one of the NHSi ligands. The reaction of the silylene ligand with [Mn(CO)5(Cl)] at room temperature afforded a mixture of two products, [Mn(CO)3(Dipp2NHSi)2(Cl)] (27*) and the insertion product [Mn(CO)4(Dipp2NHSi)(Dipp2NHSi-Cl)] (27). Complete transfer of a halide to the silylene was achieved for the reaction of Dipp2NHSi with [(η5-C5H5)Ni(PPh3)(Cl)] to yield [Ni(PPh3)(η5-C5H5)(Dipp2NHSi-Cl)] (28). Similarly, the reaction with [(η5-C5H5)Fe(CO)2(I)] led to the formation of [(η5 C5H5)Fe(CO)2(Dipp2NHSi-I)] (29).Diese Arbeit beschĂ€ftigt sich mit den Anwendungen des N-heterocyclischen Silylens Dipp2NHSi (1) als ambiphiles Reagenz in der Hauptgruppenchemie und als Ligand in der Übergangsmetallchemie. Ein Schwerpunkt dieser Arbeit ist die Beurteilung der Unterschiede in der ReaktivitĂ€t von N-heterocyclischen Silylenen in der Hauptgruppen- und Übergangsmetallchemie im Vergleich zu den heutzutage allgegenwĂ€rtigen N heterocyclischen Carbenen. Im Verlauf dieser Studie wurde Silylen 1 mit Verbindungen der Gruppe 13 umgesetzt und die Addukte Dipp2NHSi·AlI3 (2), Dipp2NHSi·Al(C6F5)3 (3) und Dipp2NHSi·B(C6F5)3 (4) isoliert. Weiterhin wurde die ReaktivitĂ€t von Dipp2NHSi (1) in Bezug auf ElementHalogen-Bindungen verschiedener Hauptgruppenelement-Verbindungen untersucht. Die Umsetzung mit elementarem Brom und Iod fĂŒhrt zu den Dihalogensilanen Dipp2NHSiBr2 (5) und Dipp2NHSiI2 (6). Unter Verwendung von Methyliodid, Benzylchlorid und Benzylbromid konnten die Insertionsprodukte Dipp2NHSi(I)(Me) (10), Dipp2NHSi(Cl)(benzyl) (11) und Dipp2NHSi(Br)(benzyl) (12) gebildet werden. Die Insertion ist gegenĂŒber der reduktiven Kupplung unter Ausbildung von RH2C–CH2R (R = H, Ph) und dem Dihalosilan bevorzugt. Die Umsetzung von 1 mit dem Zinnchlorid Me3SnCl fĂŒhrt Bildung des Diazabutens {(Me3Sn)N(Dipp)CH}2 (9). Die Reaktion mit Ph2SnCl2 hingegen ergibt das Dichlorsilan Dipp2NHSiCl2 (8) sowie cyclische Polystannane der Form (Ph2Sn)n. Außerdem wurde Dipp2NHSi mit Aziden unterschiedlichen sterischen Anspruchs umgesetzt. Die Reaktion mit Adamantylazid fĂŒhrt zur Bildung des Tetrazolins 13. Das sterisch weniger anspruchsvolle Trimethylsilylazid reagiert mit Dipp2NHSi unter Bildung des Silylazids Dipp2NHSi(N(SiMe3)2)(N3) (14). Das Cyclosilamin 15 wird durch die Reaktion von 1 mit 2,6-(Diphenyl)phenylazid gebildet. Im zweiten Teil der Arbeit wurden die Bindungssituation und die Ligandeneigenschaften von Dipp2NHSi (1) in Übergangsmetallkomplexen mithilfe von theoretischen Rechnungen und experimentellen Untersuchungen beleuchtet. DFT-Rechnungen zu den grundlegenden elektronischen Eigenschaften von Me2Im/Me2NHSi und Dipp2Im/Dipp2NHSi ergaben signifikante Unterschiede im Bereich der Grenzorbitale, welche die Bindungssituation von NHSis im Allgemeinen beeinflussen. Insbesondere ein energetisch tiefliegendes π-Orbital scheint die Koordinationschemie dieser Liganden zu bestimmen. Zur UnterstĂŒtzung der theoretischen Befunde wurden die Silylen-Komplexe M(CO)5(Dipp2NHSi)] (M = Cr 16, Mo 17, W 18) durch Umsetzung von Dipp2NHSi und [M(CO)6] (M= Cr, Mo, W) dargestellt und der Wolframkomplex 18 mit den NHC-Komplexen [W(CO)5(iPr2Im)] (19), [W(CO)5(iPr2ImMe)] (20) und [W(CO)5(Me2ImMe)] (21) verglichen. Die Bindung von Me2Im und Me2NHSi (= L) und Übergangsmetallkomplexen wurde fĂŒr die verschiedenen Modellverbindungen [Ni(L)], [Ni(CO)3(L)] und [W(CO)5(L)] mittels DFT Rechnungen untersucht, wobei einige Unterschiede zwischen den M–NHSi und M–NHC Bindungen festgestellt wurden, welche die Bindungssituation in Übergangsmetallkomplexen stark beeinflussen. Im Unterschied zu NHCs zeigen N-heterocyclische Silylene eine Neigung zur VerbrĂŒckung zweier Metallzentren und dieses Verhalten konnte anhand dreier Beispielen belegt werden. Dipp2NHSi (1) reagiert mit [Ni(CO)4] zum Silylen-verbrĂŒckten Nickelkomplex [{Ni(CO)2(ÎŒ-Dipp2NHSi)}2] (22). Die Reduktion von Nickelocen mit Lithiumnaphthalid in der Gegenwart von Dipp2NHSi (1) fĂŒhrt zur Bildung des NHSi verbrĂŒckten, Ni(I)-Dimers [(η5-C5H5)Ni(”-Dipp2NHSi)]2 (23). Ähnlich hierzu reagiert der dimere Komplex {[(η5-C5H5)Fe(CO)2]2} mit Dipp2NHSi zum Silylen-verbrĂŒckten dinuklearen Komplex [{(η5 C5H5)Fe(CO)}2(”-CO)(”-Dipp2NHSi)] (24). Weiterhin wurde die Insertion von Dipp2NHSi (1) in MetallHalogen-Bindungen anhand einer Reihe von Mangankomplexen der Form [Mn(CO)5(X)] (X = Cl, Br, I) untersucht. Die Reaktion von zwei Äquivalenten des Silylens 1 mit dem Iodokomplex [Mn(CO)5(I)] fĂŒhrt zur Bildung des Tricarbonylkomplexes [Mn(CO)3(Dipp2NHSi)2(I)] (25), in dem der Iodidligand symmetrisch zwischen den beiden Siliciumatomen der Silylenliganden in der {Mn(CO)3}-Ebene liegt. Ähnlich hierzu wird der Bis-Silylenkomplex [Mn(CO)3(Dipp2NHSi)2(Br)] (26) durch Umsetzung von [Mn(CO)5(Br)] mit 1 erhalten, wobei eine Wechselwirkung des Bromidliganden mit einem Silylenliganden beobachtet wird. Die Reaktion von Dipp2NHSi 1 mit [Mn(CO)5(Cl)] bei Raumtemperatur resultiert in der Bildung zweier Reaktionsprodukte, dem Bis-Silylenkomplex [Mn(CO)3(Dipp2NHSi)2(Cl)] (27*) und dem Insertionsprodukt [Mn(CO)4(Dipp2NHSi)(Dipp2NHSi-Cl)] (27). Die vollstĂ€ndige Übertragung des Halogenidoliganden auf das Siliciumatom von 1 kann auch fĂŒr den Halb-Sandwich-Komplex [(η5-C5H5)Ni(PPh3)(Cl)] beobachtet werden, wobei der Komplex [Ni(PPh3)(η5-C5H5)(Dipp2NHSi-Cl)] (28) isoliert wird. Ähnlich hierzu fĂŒhrt die Reaktion von [(η5-C5H5)Fe(CO)2(I)] mit dem Silylen 1 ebenfalls zur Bildung des Insertionsproduktes [(η5 C5H5)Fe(CO)2(Dipp2NHSi-I)] (29)

    N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Complexes of Titanium(IV) and Titanium(III)

    Get PDF
    The reaction of one and two equivalents of the N ‐heterocyclic carbene IMes [IMes = 1,3‐bis(2,4,6‐trimethyl‐phenyl)imidazolin‐2‐ylidene] or the cyclic (alkyl)(amino)carbene cAACMe^{Me} [cAACMe^{Me} = 1‐(2,6‐diisopropyl‐phenyl)‐3,3,5,5‐tetra‐methylpyrrolidin‐2‐ylidene] with [TiCl4_{4}] in n ‐hexane results in the formation of mono‐ and bis‐carbene complexes [TiCl4_{4}(IMes)] 1 , [TiCl4_{4}(IMes)2] 2 , [TiCl4_{4}(cAACMe^{Me})] 3 , and [TiCl4_{4}(cAACMe^{Me})2_{2}] 4 , respectively. For comparison, the titanium(IV) NHC complex [TiCl4_{4}(Ii PrMe^{Me})] 5 (Ii PrMe^{Me} = 1,3‐diisopropyl‐4,5‐dimethyl‐imidazolin‐2‐ylidene) has been synthesized and structurally characterized. The reaction of [TiCl4_{4}(IMes)] 1 with PMe3_{3} affords the mixed substituted complex [TiCl4_{4}(IMes)(PMe3_{3})] 6 . The reactions of [TiCl3_{3}(THF)3_{3}] with two equivalents of the carbenes IMes and cAACMe^{Me} in n ‐hexane lead to the clean formation of the titanium(III) complexes [TiCl3_{3}(IMes)2_{2}] 7 and [TiCl3_{3}(cAACMe^{Me})2_{2}] 8 . Compounds 1 –8 have been completely characterized by elemental analysis, IR and multinuclear NMR spectroscopy and for 2 –5 , 7 and 8 by X‐ray diffraction. Magnetometry in solution, EPR and UV/Vis spectroscopy and DFT calculations performed on 7 and 8 are indicative of a predominantly metal‐centered d1^{1}‐radical in both cases

    N-Heterocyclic Silylenes as Ligands in Transition Metal Carbonyl Chemistry:Nature of Their Bonding and Supposed Innocence

    Get PDF
    A study on the reactivity of the N-heterocyclic silylene Dipp2NHSi (1,3-bis(diisopropylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-yliden) with the transition metal complexes [Ni(CO)4], [M(CO)6] (M=Cr, Mo, W), [Mn(CO)5(Br)] and [(η5-C5H5)Fe(CO)2(I)] is reported. We demonstrate that N-heterocyclic silylenes, the higher homologues of the now ubiquitous NHC ligands, show a remarkably different behavior in coordination chemistry compared to NHC ligands. Calculations on the electronic features of these ligands revealed significant differences in the frontier orbital region which lead to some peculiarities of the coordination chemistry of silylenes, as demonstrated by the synthesis of the dinuclear, NHSi-bridged complex [{Ni(CO)2(ÎŒ-Dipp2NHSi)}2] (2), complexes [M(CO)5(Dipp2NHSi)] (M=Cr 3, Mo 4, W 5), [Mn(CO)3(Dipp2NHSi)2(Br)] (9) and [(η5-C5H5)Fe(CO)2(Dipp2NHSi-I)] (10). DFT calculations on several model systems [Ni(L)], [Ni(CO)3(L)], and [W(CO)5(L)] (L=NHC, NHSi) reveal that carbenes are typically the much better donor ligands with a larger intrinsic strength of the metal–ligand bond. The decrease going from the carbene to the silylene ligand is mainly caused by favorable electrostatic contributions for the NHC ligand to the total bond strength, whereas the orbital interactions were often found to be higher for the silylene complexes. Furthermore, we have demonstrated that the contribution of σ- and π-interaction depends significantly on the system under investigation. The σ-interaction is often much weaker for the NHSi ligand compared to NHC but, interestingly, the π-interaction prevails for many NHSi complexes. For the carbonyl complexes, the NHSi ligand is the better σ-donor ligand, and contributions of π-symmetry play only a minor role for the NHC and NHSi co-ligands

    Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di-tert-butyliminoborane and Alkynes

    No full text
    Di-tert-butyliminoborane is found to be a very useful synthon for the synthesis of a variety of functionalized 1,4-azaborinines by the Rh-mediated cyclization of iminoboranes with alkynes. The reactions proceed via [2 + 2] cycloaddition of iminoboranes and alkynes in the presence of [RhCl(PiPr3)2]2, which gives a rhodium η4-1,2-azaborete complex that yields 1,4-azaborinines upon reaction with acetylene. This reaction is compatible with substrates containing more than one alkynyl unit, cleanly affording compounds containing multiple 1,4-azaborinines. The substitution of terminal alkynes for acetylene also led to 1,4-azaborinines, enabling ring substitution at a predetermined location. We report the first general synthesis of this new methodology, which provides highly regioselective access to valuable 1,4-azaborinines in moderate yields. A mechanistic rationale for this reaction is supported by DFT calculations, which show the observed regioselectivity to arise from steric effects in the B-C bond coupling en route to the rhodium η4-1,2-azaborete complex and the selective oxidative cleavage of the B-N bond of the 1,2-azaborete ligand in its subsequent reaction with acetylene.</p

    Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di-<i>tert</i>-butyliminoborane and Alkynes

    No full text
    Di-<i>tert</i>-butyliminoborane is found to be a very useful synthon for the synthesis of a variety of functionalized 1,4-azaborinines by the Rh-mediated cyclization of iminoboranes with alkynes. The reactions proceed via [2 + 2] cycloaddition of iminoboranes and alkynes in the presence of [RhCl­(P<i>i</i>Pr<sub>3</sub>)<sub>2</sub>]<sub>2</sub>, which gives a rhodium η<sup>4</sup>-1,2-azaborete complex that yields 1,4-azaborinines upon reaction with acetylene. This reaction is compatible with substrates containing more than one alkynyl unit, cleanly affording compounds containing multiple 1,4-azaborinines. The substitution of terminal alkynes for acetylene also led to 1,4-azaborinines, enabling ring substitution at a predetermined location. We report the first general synthesis of this new methodology, which provides highly regioselective access to valuable 1,4-azaborinines in moderate yields. A mechanistic rationale for this reaction is supported by DFT calculations, which show the observed regioselectivity to arise from steric effects in the B–C bond coupling en route to the rhodium η<sup>4</sup>-1,2-azaborete complex and the selective oxidative cleavage of the B–N bond of the 1,2-azaborete ligand in its subsequent reaction with acetylene
    corecore