17 research outputs found

    HARPS3 for a Roboticized Isaac Newton Telescope

    Full text link
    We present a description of a new instrument development, HARPS3, planned to be installed on an upgraded and roboticized Isaac Newton Telescope by end-2018. HARPS3 will be a high resolution (R = 115,000) echelle spectrograph with a wavelength range from 380-690 nm. It is being built as part of the Terra Hunting Experiment - a future 10 year radial velocity measurement programme to discover Earth-like exoplanets. The instrument design is based on the successful HARPS spectrograph on the 3.6m ESO telescope and HARPS-N on the TNG telescope. The main changes to the design in HARPS3 will be: a customised fibre adapter at the Cassegrain focus providing a stabilised beam feed and on-sky fibre diameter ~ 1.4 arcsec, the implementation of a new continuous flow cryostat to keep the CCD temperature very stable, detailed characterisation of the HARPS3 CCD to map the effective pixel positions and thus provide an improved accuracy wavelength solution, an optimised integrated polarimeter and the instrument integrated into a robotic operation. The robotic operation will optimise our programme which requires our target stars to be measured on a nightly basis. We present an overview of the entire project, including a description of our anticipated robotic operation.Comment: 13 pages, 8 figures, SPIE conference proceeding

    Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final design and early procurement phase, with commissioning at the telescope expected in 2017.Comment: 11 pages, 11 Figures, Summary of a presentation to Astronomical Telescopes and Instrumentation 201

    Vitamin D Status Is Positively Correlated with Regulatory T Cell Function in Patients with Multiple Sclerosis

    Get PDF
    In several autoimmune diseases, including multiple sclerosis (MS), a compromised regulatory T cell (Treg) function is believed to be critically involved in the disease process. In vitro, the biologically active metabolite of vitamin D has been shown to promote Treg development. A poor vitamin D status has been linked with MS incidence and MS disease activity. In the present study, we assess a potential in vivo correlation between vitamin D status and Treg function in relapsing remitting MS (RRMS) patients.Serum levels of 25-hydroxyvitamin D (25(OH)D) were measured in 29 RRMS patients. The number of circulating Tregs was assessed by flow-cytometry, and their functionality was tested in vitro in a CFSE-based proliferation suppression assay. Additionally, the intracellular cytokine profile of T helper cells was determined directly ex-vivo by flow-cytometry. Serum levels of 25(OH)D correlated positively with the ability of Tregs to suppress T cell proliferation (R = 0.590, P = 0.002). No correlation between 25(OH)D levels and the number of Tregs was found. The IFN-gamma/IL-4 ratio (Th1/Th2-balance) was more directed towards IL-4 in patients with favourable 25(OH)D levels (R = -0.435, P = 0.023).These results show an association of high 25(OH)D levels with an improved Treg function, and with skewing of the Th1/Th2 balance towards Th2. These findings suggest that vitamin D is an important promoter of T cell regulation in vivo in MS patients. It is tempting to speculate that our results may not only hold for MS, but also for other autoimmune diseases. Future intervention studies will show whether modulation of vitamin D status results in modulation of the T cell response and subsequent amelioration of disease activity

    Construction progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an update on the overall construction progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been effected to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R 5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R 20000. The project has experienced some delays in procurement and now has first light expected for the middle of 2019

    Local Networks to Compete in the Global Era: The Italian SMEs Experience

    Full text link

    KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium

    No full text
    The flow-responsive transcription factor KLF2 is acquiring a leading role in the regulation of endothelial cell gene expression. A genome-wide microarray expression profiling is described employing lentivirus-mediated, 7-day overexpression of human KLF2 at levels observed under prolonged flow. KLF2 is not involved in lineage typing, as 42 endothelial-specific markers were unaffected. Rather, KLF2 generates a gene transcription profile (> 1000 genes) affecting key functional pathways such as cell migration, vasomotor function, inflammation, and hemostasis and induces a morphology change typical for shear exposure including stress fiber formation. Protein levels for thrombomodulin, endothelial nitric oxide synthase, and plasminogen activator inhibitor type-1 are altered to atheroprotective levels, even in the presence of the inflammatory cytokine TNF-alpha. KLF2 attenuates cell migration by affecting multiple genes including VEGFR2 and the potent antimigratory SEMA3F. The distribution of Weibel-Palade bodies in cultured cell populations is normalized at the single-cell level without interfering with their regulated, RalA-dependent release. In contrast, thrombin-induced release of Weibel-Palade bodies is significantly attenuated, consistent with the proposed role of VWF release at low-shear stress regions of the vasculature in atherosclerosis. These results establish that KLF2 acts as a central transcriptional switch point between the quiescent and activated states of the adult endothelial cel

    Thermal and mechanical design and test of the CCD mount for the WEAVE spectrograph cryostats

    No full text
    International audienceWEAVE is the new multi-object spectrograph for the William Herschel Telescope on La Palma. The culmination of prime focus, the large number of fibers and the wide resolution range has required a stringent optical design, which in turn demands a spectrograph with tight positional tolerances and large final focal plane. To capture this focal plane each of the two cryostats has two e2v 6k × 6k CCDs mounted as a mosaic. As well as being cooled to 150K via liquid nitrogen, the positional tolerances for the sensitive areas are flatness 60μm p-v over the entire image area, rotation around X and Y axis +/-50 arcmin, translation in X, Y and Z +/- 50 micron. We have used a Stil confocal measuring head mounted on two Thorlab translation stages to create a X,Y mount, controlled by a Raspberry Pi that is capable of recording measurements in Z to better than 1μm accuracy. This is used to measure the flatness and deformation of the image area under vacuum, and when cooled to 150K and the overall tip and tilt of the image plane to ensure they meet specification and are repeatable. In addition to this measuring system, we use a Thorlabs CMOS camera with a Navitar 50mm lens to ensure each CCDs image area is within specification with regards X and Y translation. In order to satisfy the above requirements, we designed the CCD mount to be adjustable (on initial setup), correctly constrained, isolated from liquid nitrogen boil-off vibration, and thermally insulating

    Proteomic Screen Identifies IGFBP7 as a Novel Component of Endothelial Cell-Specific Weibel-Palade Bodies

    No full text
    Vascular endothelial cells contain unique storage organelles, designated Weibel-Palade bodies (WPBs), that deliver inflammatory and hemostatic mediators to the vascular lumen in response to agonists like thrombin and vasopressin. The main component of WPBs is von Willebrand factor (VWF), a multimeric glycoprotein crucial for platelet plug formation. In addition to VWF, several other components are known to be stored in WPBs, like osteoprotegerin, monocyte chemoattractant protein-1 and angiopoetin-2 (Ang-2). Here, we used an unbiased proteomics approach to identify additional residents of WPBs. Mass spectrometry analysis of purified WPBs revealed the presence of several known components such as VWF, Ang-2, and P-selectin. Thirty-five novel candidate WPB residents were identified that included insulin-like growth factor binding protein-7 (IGFBP7), which has been proposed to regulate angiogenesis. Immunocytochemistry revealed that IGFBP7 is a bona fide WPB component. Cotransfection studies showed that IGFBP7 trafficked to pseudo-WPB in HEK293 cells. Using a series of deletion variants of VWF, we showed that targeting of IGFBP7 to pseudo-WPBs was dependent on the carboxy-terminal D4-C1-C2-C3-CK domains of VWF. IGFBP7 remained attached to ultralarge VWF strings released upon exocytosis of WPBs under flow. The presence of IGFBP7 in WPBs highlights the role of this subcellular compartment in regulation of angiogenesis
    corecore