8,615 research outputs found

    Pharmacological and non-pharmacological treatments for the Neonatal Abstinence Syndrome (NAS).

    Get PDF
    Neonatal abstinence syndrome is defined by signs and symptoms of withdrawal that infants develop after intrauterine maternal drug exposure. All infants with documented in utero opioid exposure, or a high pre-test probability of exposure should have monitoring with a standard assessment instrument such as a Finnegan Score. A Finnegan score of \u3e8 is suggestive of opioid exposure, even in the absence of declared use during pregnancy. At least half of infants in most locales can be treated without the use of pharmacologic means. For this reason, symptom scores will drive the decision for pharmacologic therapy. Nevertheless, all infants, regardless of initial manifestations, should be first be managed with non-pharmacologic approaches which in turn, should not be considered as the sole alternative to drug therapy, but rather, as the base upon which all patients are treated. Those who continue to have symptoms despite supportive care should be pharmacologically treated, which in the most severe cases, is life-saving

    Improved surface quality of anisotropically etched silicon {111} planes for mm-scale integrated optics

    Full text link
    We have studied the surface quality of millimeter-scale optical mirrors produced by etching CZ and FZ silicon wafers in potassium hydroxide to expose the {111}\{111\} planes. We find that the FZ surfaces have four times lower noise power at spatial frequencies up to 500 mm−1500\, {mm}^{-1}. We conclude that mirrors made using FZ wafers have higher optical quality

    Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation

    Get PDF
    6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe

    Sympathetic Cooling of Lithium by Laser-cooled Cesium

    Get PDF
    We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO2_2 laser, and allowed to interact for a given period of time. The temperature of the lithium gas is found to decrease when in thermal contact with cold cesium. The timescale of thermalization yields an estimate for the Li-Cs cross-section.Comment: 4 pages, proceedings of ICOLS 200

    Experiment K-6-12. Morphometric studies of atrial or granules and hepatocytes. Part 1: Morphometric study of the liver; Part 2: The atrial granular accumulations

    Get PDF
    The livers of flight, F, rats from the Cosmos 1887 mission were markedly paler and heavier than those of the synchronous, S, and vivarium, V, controls. In the F group, microscopic study revealed extensive hepatocytic intracytoplasmic vacuolization which was moderate in the S and minimal in the V groups. The vacuoles were not sudanophilic and therefore were regarded as glycogenic in origin. To obtain objective data concerning the extent of the vacuolization, livers were examined by computer assisted morphometry. Measurements of profile area and perimeter of the hepatocyte nuclei and vacuoles were evaluated according to stereological principles. Results indicated that the volume density of the nuclei was less in the F group than in the S(p equal less than 0.0002) and V(p equal less than 0.001) groups. Mean volume of individual nuclei did not differ. Volume density of the vacuoles was greater in the F than in the V group (p equal less than 0.02) while their mean diameter was less (p equal less than 0.05). To ascertain the relationship between increase in liver weight of the flight animals and the results of this study, an assumption was made that the specific gravity of the vacuolar contents was similar to the other extranuclear components of the hepatocyte. On that basis, calculations showed that the elevated vacuolar volume density in the flight group did not cause the increased liver weight in those animals, but that the non-nuclear, non-vacuolar parenchymal compartment did contribute significantly. Factors that may have played a causal role in liver weight and vacuolar compartment increases are discussed

    Investigation of peak shapes in the MIBETA experiment calibrations

    Full text link
    In calorimetric neutrino mass experiments, where the shape of a beta decay spectrum has to be precisely measured, the understanding of the detector response function is a fundamental issue. In the MIBETA neutrino mass experiment, the X-ray lines measured with external sources did not have Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If this shoulder were a general feature of the detector response function, it would distort the beta decay spectrum and thus mimic a non-zero neutrino mass. An investigation was performed to understand the origin of the shoulder and its potential influence on the beta spectrum. First, the peaks were fitted with an analytic function in order to determine quantitatively the amount of events contributing to the shoulder, also depending on the energy of the calibration X-rays. In a second step, Montecarlo simulations were performed to reproduce the experimental spectrum and to understand the origin of its shape. We conclude that at least part of the observed shoulder can be attributed to a surface effect

    Mixture of ultracold lithium and cesium atoms in an optical dipole trap

    Full text link
    We present the first simultaneous trapping of two different ultracold atomic species in a conservative trap. Lithium and cesium atoms are stored in an optical dipole trap formed by the focus of a CO2_2 laser. Techniques for loading both species of atoms are discussed and observations of elastic and inelastic collisions between the two species are presented. A model for sympathetic cooling of two species with strongly different mass in the presence of slow evaporation is developed. From the observed Cs-induced evaporation of Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected evaporation formulas and some postscript problem

    Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies

    Full text link
    Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on samples containing a quasi-two-dimensional electron gas quantum-confined in a parabolic quantum well. For rectangular shaped grating couplers of different periods we observe a strong dependence of the transmission line shape and peak height on the period of the grating, i.e. on the wave vector transfer from the diffracted beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quantization effects. Our theory reproduces excellently the experimental line shapes. The deformation of the transmission line shapes we explain by the occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres

    Combined chips for atom-optics

    Get PDF
    We present experiments with Bose-Einstein condensates on a combined atom chip. The combined structure consists of a large-scale "carrier chip" and smaller "atom-optics chips", containing micron-sized elements. This allows us to work with condensates very close to chip surfaces without suffering from fragmentation or losses due to thermally driven spin flips. Precise three-dimensional positioning and transport with constant trap frequencies are described. Bose-Einstein condensates were manipulated with submicron accuracy above atom-optics chips. As an application of atom chips, a direction sensitive magnetic field microscope is demonstrated.Comment: 9 pages, 9 figure

    A MODEL FOR LEARNING COORDINATED FAST MOVEMENTS

    Get PDF
    Coordinated fast movements are characterised by an effective intermuscular interaction. The result of this intermuscular coordination is a straight path towards a given target. The speed profile of the movement is "bell-shaped", so that a movement with a smooth stop results (an overshoot is not observed). In this work an artificial neural network acts as a controller of an idealised human arm during a catching movement. The model arm is taken from the literature with minor changes. The nervous system is modelled by an artificial neural network (ANN). It consists of a sensory map that is connected to a motor map by an intermediate associative layer. The results demonstrate that simple neural networks in interaction with musculoskeletal dynamics are able to model the ability of the central nervous system to coordinate fast movements
    • …
    corecore