We present experiments with Bose-Einstein condensates on a combined atom
chip. The combined structure consists of a large-scale "carrier chip" and
smaller "atom-optics chips", containing micron-sized elements. This allows us
to work with condensates very close to chip surfaces without suffering from
fragmentation or losses due to thermally driven spin flips. Precise
three-dimensional positioning and transport with constant trap frequencies are
described. Bose-Einstein condensates were manipulated with submicron accuracy
above atom-optics chips. As an application of atom chips, a direction sensitive
magnetic field microscope is demonstrated.Comment: 9 pages, 9 figure