7,920 research outputs found
Spatially resolved photo ionization of ultracold atoms on an atom chip
We report on photo ionization of ultracold magnetically trapped Rb atoms on
an atom chip. The atoms are trapped at 5 K in a strongly anisotropic
trap. Through a hole in the chip with a diameter of 150 m two laser beams
are focussed onto a fraction of the atomic cloud. A first laser beam with a
wavelength of 778 nm excites the atoms via a two photon transition to the 5D
level. With a fiber laser at 1080 nm the excited atoms are photo ionized.
Ionization leads to depletion of the atomic density distribution observed by
absorption imaging. The resonant ionization spectrum is reported. The setup
used in this experiment is not only suitable to investigate BEC ion mixtures
but also single atom detection on an atom chip
Investigation of peak shapes in the MIBETA experiment calibrations
In calorimetric neutrino mass experiments, where the shape of a beta decay
spectrum has to be precisely measured, the understanding of the detector
response function is a fundamental issue. In the MIBETA neutrino mass
experiment, the X-ray lines measured with external sources did not have
Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If
this shoulder were a general feature of the detector response function, it
would distort the beta decay spectrum and thus mimic a non-zero neutrino mass.
An investigation was performed to understand the origin of the shoulder and its
potential influence on the beta spectrum. First, the peaks were fitted with an
analytic function in order to determine quantitatively the amount of events
contributing to the shoulder, also depending on the energy of the calibration
X-rays. In a second step, Montecarlo simulations were performed to reproduce
the experimental spectrum and to understand the origin of its shape. We
conclude that at least part of the observed shoulder can be attributed to a
surface effect
Nonlinear Dynamics of a Bose-Einstein Condensate in a Magnetic Waveguide
We have studied the internal and external dynamics of a Bose-Einstein
condensate in an anharmonic magnetic waveguide. An oscillating condensate
experiences a strong coupling between the center of mass motion and the
internal collective modes. Due to the anharmonicity of the magnetic potential,
not only the center of mass motion shows harmonic frequency generation, but
also the internal dynamics exhibit nonlinear frequency mixing. We describe the
data with a theoretical model to high accuracy. For strong excitations we test
the experimental data for indications of a chaotic behavior.Comment: 4 pages, 4 figure
Sympathetic Cooling of Lithium by Laser-cooled Cesium
We present first indications of sympathetic cooling between two neutral,
optically trapped atomic species. Lithium and cesium atoms are simultaneously
stored in an optical dipole trap formed by the focus of a CO laser, and
allowed to interact for a given period of time. The temperature of the lithium
gas is found to decrease when in thermal contact with cold cesium. The
timescale of thermalization yields an estimate for the Li-Cs cross-section.Comment: 4 pages, proceedings of ICOLS 200
Combined chips for atom-optics
We present experiments with Bose-Einstein condensates on a combined atom
chip. The combined structure consists of a large-scale "carrier chip" and
smaller "atom-optics chips", containing micron-sized elements. This allows us
to work with condensates very close to chip surfaces without suffering from
fragmentation or losses due to thermally driven spin flips. Precise
three-dimensional positioning and transport with constant trap frequencies are
described. Bose-Einstein condensates were manipulated with submicron accuracy
above atom-optics chips. As an application of atom chips, a direction sensitive
magnetic field microscope is demonstrated.Comment: 9 pages, 9 figure
Mixture of ultracold lithium and cesium atoms in an optical dipole trap
We present the first simultaneous trapping of two different ultracold atomic
species in a conservative trap. Lithium and cesium atoms are stored in an
optical dipole trap formed by the focus of a CO laser. Techniques for
loading both species of atoms are discussed and observations of elastic and
inelastic collisions between the two species are presented. A model for
sympathetic cooling of two species with strongly different mass in the presence
of slow evaporation is developed. From the observed Cs-induced evaporation of
Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected
evaporation formulas and some postscript problem
Delayed feedback control of self-mobile cavity solitons in a wide-aperture laser with a saturable absorber
We investigate the spatiotemporal dynamics of cavity solitons in a broad area
vertical-cavity surface-emitting laser with saturable absorption subjected to
time-delayed optical feedback. Using a combination of analytical, numerical and
path continuation methods we analyze the bifurcation structure of stationary
and moving cavity solitons and identify two different types of traveling
localized solutions, corresponding to slow and fast motion. We show that the
delay impacts both stationary and moving solutions either causing drifting and
wiggling dynamics of initially stationary cavity solitons or leading to
stabilization of intrinsically moving solutions. Finally, we demonstrate that
the fast cavity solitons can be associated with a lateral mode-locking regime
in a broad-area laser with a single longitudinal mode
Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip
We experimentally study the diffraction of a Bose-Einstein condensate from a
magnetic lattice, realized by a set of 372 parallel gold conductors which are
micro fabricated on a silicon substrate. The conductors generate a periodic
potential for the atoms with a lattice constant of 4 microns. After exposing
the condensate to the lattice for several milliseconds we observe diffraction
up to 5th order by standard time of flight imaging techniques. The experimental
data can be quantitatively interpreted with a simple phase imprinting model.
The demonstrated diffraction grating offers promising perspectives for the
construction of an integrated atom interferometer.Comment: 4 pages, 4 figure
- …