6,925 research outputs found

    Investigation of peak shapes in the MIBETA experiment calibrations

    Full text link
    In calorimetric neutrino mass experiments, where the shape of a beta decay spectrum has to be precisely measured, the understanding of the detector response function is a fundamental issue. In the MIBETA neutrino mass experiment, the X-ray lines measured with external sources did not have Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If this shoulder were a general feature of the detector response function, it would distort the beta decay spectrum and thus mimic a non-zero neutrino mass. An investigation was performed to understand the origin of the shoulder and its potential influence on the beta spectrum. First, the peaks were fitted with an analytic function in order to determine quantitatively the amount of events contributing to the shoulder, also depending on the energy of the calibration X-rays. In a second step, Montecarlo simulations were performed to reproduce the experimental spectrum and to understand the origin of its shape. We conclude that at least part of the observed shoulder can be attributed to a surface effect

    WATCAT: a tale of wide-angle tailed radio galaxies

    Full text link
    We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT; these galaxies were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS), and mainly built including a radio morphological classification. We included in the catalog only radio sources showing two-sided jets with two clear "warmspots" (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z ≤\leq 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (-20.5 ≳\gtrsim Mr ≳\gtrsim -23.7), red early-type galaxies with black hole masses in the range 108≲10^8\lesssim MBH≲109_{\rm BH} \lesssim 10^9 M⊙_\odot. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FRI and FRII radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FRI radio galaxies, having radio power of typical FRIIs

    Nonlinear Dynamics of a Bose-Einstein Condensate in a Magnetic Waveguide

    Full text link
    We have studied the internal and external dynamics of a Bose-Einstein condensate in an anharmonic magnetic waveguide. An oscillating condensate experiences a strong coupling between the center of mass motion and the internal collective modes. Due to the anharmonicity of the magnetic potential, not only the center of mass motion shows harmonic frequency generation, but also the internal dynamics exhibit nonlinear frequency mixing. We describe the data with a theoretical model to high accuracy. For strong excitations we test the experimental data for indications of a chaotic behavior.Comment: 4 pages, 4 figure

    Thermal Instability and the Formation of Clumpy Gas Clouds

    Full text link
    The radiative cooling of optically thin gaseous regions and the formation of a two-phase medium and of cold gas clouds with a clumpy substructure is investigated. In optically thin clouds, the growth rate of small isobaric density perturbations is independent of their length scale. However, the growth of a perturbation is limited by its transition from isobaric to isochoric cooling. The temperature at which this transition occurs decreases with the length scale of the perturbation. Consequently small scale perturbations have the potential to reach higher amplitudes than large scale perturbations. When the amplitude becomes nonlinear, advection overtakes the pressure gradient in promoting the compression resulting in an accelerated growth of the disturbance. The critical temperature for transition depends on the initial amplitude. The fluctuations which can first reach nonlinearity before their isobaric to isochoric transition will determine the characteristic size and mass of the cold dense clumps which would emerge from the cooling of an initially nearly homogeneous region of gas. Thermal conduction is in general very efficient in erasing isobaric, small-scale fluctuations, suppressing a cooling instability. A weak, tangled magnetic field can however reduce the conductive heat flux enough for low-amplitude fluctuations to grow isobarically and become non-linear if their length scales are of order 0.01 pc. Finally, we demonstrate how a 2-phase medium, with cold clumps being pressure confined in a diffuse hot residual background component, would be sustained if there is adequate heating to compensate the energy loss.Comment: 26 pages, Latex, 10 postscript figures, ApJ, in pres

    Development of a decision analytic model to support decision making and risk communication about thrombolytic treatment

    Get PDF
    Background Individualised prediction of outcomes can support clinical and shared decision making. This paper describes the building of such a model to predict outcomes with and without intravenous thrombolysis treatment following ischaemic stroke. Methods A decision analytic model (DAM) was constructed to establish the likely balance of benefits and risks of treating acute ischaemic stroke with thrombolysis. Probability of independence, (modified Rankin score mRS ≤ 2), dependence (mRS 3 to 5) and death at three months post-stroke was based on a calibrated version of the Stroke-Thrombolytic Predictive Instrument using data from routinely treated stroke patients in the Safe Implementation of Treatments in Stroke (SITS-UK) registry. Predictions in untreated patients were validated using data from the Virtual International Stroke Trials Archive (VISTA). The probability of symptomatic intracerebral haemorrhage in treated patients was incorporated using a scoring model from Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST) data. Results The model predicts probabilities of haemorrhage, death, independence and dependence at 3-months, with and without thrombolysis, as a function of 13 patient characteristics. Calibration (and inclusion of additional predictors) of the Stroke-Thrombolytic Predictive Instrument (S-TPI) addressed issues of under and over prediction. Validation with VISTA data confirmed that assumptions about treatment effect were just. The C-statistics for independence and death in treated patients in the DAM were 0.793 and 0.771 respectively, and 0.776 for independence in untreated patients from VISTA. Conclusions We have produced a DAM that provides an estimation of the likely benefits and risks of thrombolysis for individual patients, which has subsequently been embedded in a computerised decision aid to support better decision-making and informed consent

    Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip

    Full text link
    We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are micro fabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microns. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to 5th order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.Comment: 4 pages, 4 figure

    Advanced subsonic transport propulsion

    Get PDF
    A brief review of the current NASA Energy Efficient Engine (E(3)) Project is presented. Included in this review are the factors that influenced the design of these turbofan engines and the advanced technology incorporated in them to reduce fuel consumption and improve environmental characteristics. In addition, factors such as the continuing spiral in fuel cost, that could influence future aircraft propulsion systems beyond those represented by the E(3) engines, are also discussed. Advanced technologies that will address these influencing factors and provide viable future propulsion systems are described. The potential importance of other propulsion system types, such as geared fans and turboshaft engines, is presented

    The Hard X-Ray View of Reflection, Absorption, and the Disk-Jet Connection in the Radio-Loud AGN 3C 33

    Get PDF
    We present results from Suzaku and Swift observations of the nearby radio galaxy 3C 33, and investigate the nature of absorption, reflection, and jet production in this source. We model the 0.5-100 keV nuclear continuum with a power law that is transmitted either through one or more layers of pc-scale neutral material, or through a modestly ionized pc-scale obscurer. The standard signatures of reflection from a neutral accretion disk are absent in 3C 33: there is no evidence of a relativistically blurred Fe Kα\alpha emission line, and no Compton reflection hump above 10 keV. We find the upper limit to the neutral reflection fraction is R<0.41 for an e-folding energy of 1 GeV. We observe a narrow, neutral Fe Kα\alpha line, which is likely to originate at least 2,000 R_s from the black hole. We show that the weakness of reflection features in 3C 33 is consistent with two interpretations: either the inner accretion flow is highly ionized, or the black-hole spin configuration is retrograde with respect to the accreting material.Comment: 12 pages, 11 figures, 4 tables. Accepted for publication in Ap
    • …
    corecore