34 research outputs found

    Dissipative Boussinesq System of Equations in the B\'enard-Marangoni Phenomenon

    Full text link
    By using the long-wave approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a B\'enard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained. Finnaly, some speculations are made on the nature of the physical phenomena described by this system of equations.Comment: 15 Pages, REVTEX (Version 3.0), no figure

    An integrable semi-discretization of the Camassa-Holm equation and its determinant solution

    Full text link
    An integrable semi-discretization of the Camassa-Holm equation is presented. The keys of its construction are bilinear forms and determinant structure of solutions of the CH equation. Determinant formulas of NN-soliton solutions of the continuous and semi-discrete Camassa-Holm equations are presented. Based on determinant formulas, we can generate multi-soliton, multi-cuspon and multi-soliton-cuspon solutions. Numerical computations using the integrable semi-discrete Camassa-Holm equation are performed. It is shown that the integrable semi-discrete Camassa-Holm equation gives very accurate numerical results even in the cases of cuspon-cuspon and soliton-cuspon interactions. The numerical computation for an initial value condition, which is not an exact solution, is also presented

    537Microparticles and exosomes differentially impact on endothelial cell function in coronary artery disease

    Get PDF
    Background and Purpose: Microparticles (MPs) and exosomes are released by cells using different mechanisms. Thus, quantitative as well as qualitative changes of both particle populations, MPs and exosomes, in patients with coronary artery disease (CAD) might reflect an altered activation status of the endothelium, platelets and leukocytes. Moreover, they might exert differential effects on the target organs, such as the endothelium. Yet, alterations in both populations have not been studied side-by-side so far. The aim of the study was to compare the impact of MPs and exosomes from healthy subjects and CAD patients on endothelial cell (EC) functional characteristics. Methods: MPs and exosomes were isolated by stepwise filtration and ultracentrifugation from citrate-plasma and verified by electron microscopy and dynamic light scattering. MP and exosome fractions, as well as the vehicle (PBS), were added to human arterial ECs and EC apoptosis, number, size, capacity for in vitro-reendothelialisation after scratching, expression of adhesion molecules ICAM-1 and VCAM-1 were assessed. In parallel, platelet-, endothelial- and leukocyte-derived MPs were quantified. In a separate sub-study, the same parameters were assessed in plasma of CAD patients undergoing standard medical rehabilitation or an exercise-based cardiac rehabilitation programme. Results: MPs of healthy, but not of CAD patients supported in vitro re-endothelialisation, while exosomes had no influence. Exercise, but not standard rehabilitation improved CAD MP capacity to support in vitro rehabilitation. This was negatively correlated to the number of leukocyte- and endothelial-derived MPs, but not total or platelet MPs. EC number was negatively affected by exposure to CAD MPs. ANCOVA analysis identified disease, but not the particle type as influencing factor. Instead, apoptotic cell death was influenced by particle type, but not by the disease, and was not altered in rehabilitation. Similarly, ICAM-1 and VCAM-1 expression were enhanced on ECs after incubation with exosomes, but not with MPs, with no effect of disease or rehabilitation. Conclusion: MPs and exosomes differentially affect endothelial cell function and underlie differential modulation in disease and rehabilitation. Those findings might in the future help to optimize and monitor cardiovascular therap

    Resonances in a trapped 3D Bose-Einstein condensate under periodically varying atomic scattering length

    Full text link
    Nonlinear oscillations of a 3D radial symmetric Bose-Einstein condensate under periodic variation in time of the atomic scattering length have been studied analytically and numerically. The time-dependent variational approach is used for the analysis of the characteristics of nonlinear resonances in the oscillations of the condensate. The bistability in oscillations of the BEC width is invistigated. The dependence of the BEC collapse threshold on the drive amplitude and parameters of the condensate and trap is found. Predictions of the theory are confirmed by numerical simulations of the full Gross-Pitaevski equation.Comment: 17 pages, 10 figures, submitted to Journal of Physics

    Endothelial and leukocyte-derived microvesicles and cardiovascular risk after stroke PROSCIS-B

    Get PDF
    Objective To determine the role of circulating microvesicles (MV) on long-term cardiovascular outcomes after stroke, we measured them in patients with first-ever stroke with a 3-year follow-up. Methods In the Prospective Cohort With Incident Stroke Berlin (PROSCIS-B), patients with first-ever ischemic stroke were followed up for 3 years. The primary combined endpoint consisted of recurrent stroke, myocardial infarction, and all-cause mortality. Citrate-blood levels of endothelial MV (EMV), leukocyte-derived MV (LMV), monocytic MV (MMV), and platelet-derived MV (PMV) were measured with flow cytometry. Kaplan-Meier curves and adjusted Cox proportional hazards models were used to estimate the effect of MV levels on the combined endpoint. Results Five hundred seventy-one patients were recruited (median age 69 years, 39% female, median NIH Stroke Scale score 2, interquartile range 1-4), and 95 endpoints occurred. Patients with levels of EMV (adjusted hazard ratio [HR] 2.5, 95% confidence interval [CI] 1.2-4.9) or LMV (HR 3.1, 95% CI 1.4-6.8) in the highest quartile were more likely to experience an event than participants with lower levels with the lowest quartile used as the reference category. The association was less pronounced for PMV (HR 1.7, 95% CI 0.9-3.2) and absent for MMV (HR 1.1, 95% CI 0.6-1.8). Conclusion High levels of EMV and LMV after stroke were associated with worse cardiovascular outcome within 3 years. These results reinforce that endothelial dysfunction and vascular inflammation affect the long-term prognosis after stroke. EMV and LMV might play a role in risk prediction for stroke patients. ClinicalTrials.gov Identifier NCT01363856. Classification of Evidence This study provides Class II evidence of the effect of MV levels on subsequent stroke, myocardial infarction, or all-cause mortality in survivors of mild stroke.Clinical epidemiolog

    Potential health and economic impacts of dexamethasone treatment for patients with COVID-19

    Get PDF
    Acknowledgements We thank all members of the COVID-19 International Modelling Consortium and their collaborative partners. This work was supported by the COVID-19 Research Response Fund, managed by the Medical Sciences Division, University of Oxford. L.J.W. is supported by the Li Ka Shing Foundation. R.A. acknowledges funding from the Bill and Melinda Gates Foundation (OPP1193472).Peer reviewedPublisher PD
    corecore