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Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked (IPEX) syndrome is an
autoimmune condition caused by mutations in the Forkhead Box P3 (FOXP3) gene, which
maps to chromosome Xp11.23 (OMIM #304790).1 It typically presents within the first year of
life with watery diarrhea, eczematous dermatitis, and endocrinopathy (most commonly di-
abetes mellitus).1 Most children have other autoimmune phenomena including Coombs-
positive anemia, thrombocytopenia, neutropenia, and tubular nephropathy.1 Bone marrow
transplantation is the only definitive cure for IPEX syndrome.2 Neurologic involvement in
IPEX syndrome has not been well characterized in the literature, based on a current Ovid
MEDLINE search. Without aggressive immunosuppression or bone marrow transplantation,
the majority of affected boys die within the first 1 to 2 years of life frommetabolic derangements
or sepsis.1 Diagnosis is based on clinical features and whole exome sequencing that reveals a
pathogenic FOXP3 variant.1

FOXP3, on Xp11.23, comprises 12 exons, encoding a 431–amino acid protein, FOXP3, a
member of the Forkhead (FKH) family of transcription factors (OMIM #300292).1 At least 70
pathogenic variants of FOXP3 are known, with a wide spectrum of clinical phenotypes asso-
ciated even in the same variant.2

FOXP3 acts upon the immune system by modulating and suppressing interleukin-2, suppressing
effector cytokines, and antagonizing Th17 differentiation.2 In effect, the FOXP3 protein plays a
critical role in the maturation and function of regulatory T cells (Treg), which are required for
effective maintenance of tolerance and prevention of autoimmune diseases, throughout the body.2

Case Description
A 19-year-old man at the age of 2 years presented with jaundice and liver failure due to
autoimmune hepatitis, for which he received a liver transplant. He had recurrent episodes of
rejection of varying severity but was ultimately stable on prednisone 5 mg daily, mycophenolate
mofetil 750 mg twice daily, and tacrolimus 2.5 mg twice daily. At age 12 he developed pro-
gressive difficulties with handwriting, with bilateral hand tremors beginning by age 14. He
developed insulin-dependent diabetes mellitus at age 14 as well. His tremors progressed to the
arms and then to the legs by the age of 15, at which time he presented to clinic for further
evaluation. He denied any family history of neurologic disease.

The differential diagnosis for a progressive subacute-chronic cerebellar ataxia includes structural
lesions, infection, toxic-metabolic derangements, genetic etiologies, and autoimmune etiologies.

Neuroimaging was performed upon presentation to rule out a structural lesion, followed by
serum testing for toxic-metabolic causes. Serial brain MRI at ages 15 and 16 revealed stable
cerebellar atrophy with ex vacuo dilation of the fourth ventricle. No other lesions were observed
(figure, A). Serum vitamin E level was 6.1 μg/mL (normal 4.6–17.8).
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As the patient showed progressive ataxia from an early age, we
considered genetic causes and whole exome sequencing was
sent. Whole exome sequencing is a next-generation se-
quencing method that targets only the exons or translated
portion of a patient’s genome. It is thought to be an effective
method for identifying disease-causing mutations.3 Whole
exome sequencing at age 16 revealed a FOXP3 mutation
(IVS2+1G>C), consistent with IPEX syndrome.

In addition, a panel testing for mutations and triple repeat
expansions of 42 genes associated with hereditary cerebellar
ataxia was sent. This panel included those repeat expansion
mutations that would have been missed by whole exome se-
quencing. These genes included ADCK3, SCA28 (AFG3L2),
ANO10, Aprataxin (APTX), ATM, DRPLA (ATN1), SCA1
(ATXN1), SCA10 (ATXN10), SCA2 (ATXN2), SCA3/MJD
(ATXN3), SCA7 (ATXN7), SCA8 (ATXN8OS), SCA8
(CACNA1A), CACNA1A, CACNB4, EEF2, FGF14, FLVCR1,
Friedreich Ataxia (FXN), GRM1, ITPR1, KCNA1, SCA13
(KCNC3), KCND3, MRE11A, MTPAP, PDYN, POLG, SCA12
(PPP2R2B), SCA14 (PRKCG), SACS, SETX, SIL1 (MSS),
SLC1A3, SCA5 (SPTBN2), SYNE1, SYT14, SCA17, TDP1,
TGM6, TTBK2, TTPA (AVED), and VAMP1. No known
pathogenic variants were identified.

The liver failure and insulin-dependent diabetes were well-
explained by IPEX syndrome. However, the etiology of the
progressive cerebellar atrophy was not yet clear.

The symptoms continued to progress, and by age 17 the patient
required assistance to walk. By age 18, he developed scanning
speech, bilateral end-gaze nystagmus, bilateral intention tremor
(<5 Hz) with ataxic finger to nose testing and heel to shin
testing, and a wide-based ataxic gait.

The patient was referred to the NIH for further testing and
underwent lumbar puncture and cerebellar biopsy. Routine
CSF analysis with flow cytometry and viral PCR were per-
formed at NIH, and serum and CSF autoantibody testing were
sent to Mayo Clinic. CSF analysis showed elevated protein (50
mg/dL) and immunoglobulin G index (0.69) (normal ≤0.62)
as well as paired systemic and CSF oligoclonal bands. Viral
PCRs of whole blood and CSF were unremarkable, except for
high titers of human herpesvirus 6 (HHV6) (HHV6B PCR
serum >2,500,000 copies/mL). One copy of HHV6 viral DNA
was found in each of the patient’s cells and in the patient’s
mother, suggesting inherited chromosomally integrated
HHV6B. Serum autoantibody results were nonspecific and
revealed low titers of N-type calcium channel Ab (0.09 nmol/
L) without P/Q type antibodies. Serum andCSF were negative
for cell surface neuronal antigen antibodies (NMDA-R, VGKC,
GAD65, GABA-B, AMPA-R, ANNA-1/2/3, AGNA-1, PCA-2,
PCATr, amphiphysin, CRMP-5, P/Q Ca channel, muscle
AChR, AChR ganglionic neuronal, NMO/AQP4 FACS).

Cerebellar biopsy showed loss of Purkinje cells, a CD3 T-cell
infiltrate, and CD68 (KP-1) microglial nodules (figure, B–D).

Discussion
Our patient met clinical and whole exome criteria for IPEX
syndrome and experienced progressive cerebellar ataxia. The
search for acquired causes of his cerebellar atrophy was
unrevealing.

The patient’s medications, particularly tacrolimus and myco-
phenolate, are associated with mild to severe neurologic tox-
icities ranging from uncomplicated headache to posterior

Figure MRI Brain and Cerebellar Biopsies

(A) Sagittal and axial MRI brain, from Soldatos et al.10 (B–D) Cerebellar biopsies with immunostaining, from Soldatos et al.10
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reversible encephalopathy syndrome, but are not known to be
associated with global cerebellar atrophy.4

Serum and CSF assays for metabolic or infectious causes were
unrevealing. Serum vitamin E was normal. Our patient dis-
played high titers of HHV6B in the blood and CSF. While
HHV6 infection is associated with infectious and post-
infectious acute cerebellar ataxia, it is not associated with a
chronically progressive course as seen in this patient.5

Other infectious causes of progressive cerebellar degeneration
involve progressive multifocal leukoencephalopathy (PML),
Whipple disease, and prion disease. There was no evidence of
PML on neuroimaging, and such a slowly progressive course
would not be expected in prion disease. The patient has not
exhibited altered mentation or the pathognomonic oculo-
facial-skeletal myorhythmia of CNS Whipple disease.6

We also considered autoimmune causes separate from IPEX
syndrome. The autoimmune diseases of the cerebellum gen-
erally include paraneoplastic syndromes (associated with
Anti-Yo, Hu, Tr, CV2, Ri, Ma2, and VGCC), gluten ataxia,
and anti-Gad65 antibody ataxia. A paraneoplastic process
would be unlikely in a male patient of teenage years, and
gluten ataxia and anti-GAD65 antibody ataxia usually present
in older female patients with other autoimmune diseases
(T1DM, thyroiditis, hemolytic anemia).7 These autoanti-
bodies were not found in CSF analysis.

Other inherited disorders, such as X-linked disorders with
cerebellar dysgenesis, are known, and many have been well-
characterized.8 The cardinal feature of these disorders is a
cerebellar defect visible on neuroimaging, caused by gene
mutations or genomic imbalances on the X-chromosome.8

Some of the disorders are characterized by specific neurologic
presentations, but most involve significant developmental delay
or intellectual disability, which our patient did not manifest.8

In addition, specific mutations on the X chromosome have
been characterized in each case, and our whole exome se-
quencing did not coincide with any known pathogenic vari-
ants known to be associated with cerebellar dysgenesis.8

The cerebellar biopsy was similarly unrevealing, showing a
pattern of inflammation and cell death that is T cell–mediated,
yet nonspecific (figure, B–D).

Our patient’s cerebellar degeneration may have been a result of
his liver failure early in life.9 However, it is unusual that his
cerebellar degeneration appeared and progressed years follow-
ing liver transplant. It is therefore most likely that our patient is
the first reported to have manifested CNS involvement in IPEX
syndrome in the form of progressive autoimmune degeneration.

The patient’s brother, age 9, has been found to harbor the
same X-linked FOXP3mutation, which is known to be carried
by their mother. He has manifested features of inflammatory

bowel disease and dermatitis, but no neurologic problems.
Bone marrow transplantation is pending for both brothers.

Patients with IPEX syndrome and neurologic decline should
have a thorough neurologic examination looking for possible
cerebellar degeneration.
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