125 research outputs found

    Light nuclei quasiparticle energy shift in hot and dense nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the correlated medium such as self-energy, Pauli blocking and Bose enhancement. Similar to the single-baryon states (free neutrons and protons), the light elements (2A42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P;T,nn,np)E_{A,\nu}(\vec P; T, n_n,n_p). These energies depend on the center of mass momentum P\vec P, as well as temperature TT and the total densities nn,npn_n,n_p of neutrons and protons, respectively. No β\beta equilibrium is considered so that nn,npn_n, n_p (or the corresponding chemical potentials μn,μp\mu_n, \mu_p) are fixed independently. For the single nucleon quasiparticle energy shift, different approximate expressions such as Skyrme or relativistic mean field approaches are well known. Treating the AA-particle problem in appropriate approximations, results for the cluster quasiparticle shifts are given. Properties of dense nuclear matter at moderate temperatures in the subsaturation density region considered here are influenced by the composition. This in turn is determined by the cluster quasiparticle energies, in particular the formation of clusters at low densities when the temperature decreases, and their dissolution due to Pauli blocking as the density increases. Our finite-temperature Green function approach covers different limiting cases: The low-density region where the model of nuclear statistical equilibrium and virial expansions can be applied, and the saturation density region where a mean field approach is possible

    Monte Carlo results for the hydrogen Hugoniot

    Full text link
    We propose a theoretical Hugoniot obtained by combining results for the equation of state (EOS) from the Direct Path Integral Monte Carlo technique (DPIMC) and those from Reaction Ensemble Monte Carlo (REMC) simulations. The main idea of such proposal is based on the fact that DPMIC provides first-principle results for a wide range of densities and temperatures including the region of partially ionized plasmas. On the other hand, for lower temperatures where the formation of molecules becomes dominant, DPIMC simulations become cumbersome and inefficient. For this region it is possible to use accurate REMC simulations where bound states (molecules) are treated on the Born-Oppenheimer level using a binding potential calculated by Kolos and Wolniewicz. The remaining interaction is then reduced to the scattering between neutral particles which is reliably treated classically applying effective potentials. The resulting Hugoniot is located between the experimental values of Knudson {\textit{et al.}} \cite{1} and Collins {\textit{et al.}} \cite{2}.Comment: 10 pges, 2 figures, 2 table

    Single-particle spectral function for the classical one-component plasma

    Full text link
    The spectral function for an electron one-component plasma is calculated self-consistently using the GW0 approximation for the single-particle self-energy. In this way, correlation effects which go beyond the mean-field description of the plasma are contained, i.e. the collisional damping of single-particle states, the dynamical screening of the interaction and the appearance of collective plasma modes. Secondly, a novel non-perturbative analytic solution for the on-shell GW0 self-energy as a function of momentum is presented. It reproduces the numerical data for the spectral function with a relative error of less than 10% in the regime where the Debye screening parameter is smaller than the inverse Bohr radius, kappa<1/a_B. In the limit of low density, the non-perturbative self-energy behaves as n^(1/4), whereas a perturbation expansion leads to the unphysical result of a density independent self-energy [W. Fennel and H. P. Wilfer, Ann. Phys. Lpz._32_, 265 (1974)]. The derived expression will greatly facilitate the calculation of observables in correlated plasmas (transport properties, equation of state) that need the spectral function as an input quantity. This is demonstrated for the shift of the chemical potential, which is computed from the analytical formulae and compared to the GW0-result. At a plasma temperature of 100 eV and densities below 10^21 cm^-3, both approaches deviate less than 10% from each other.Comment: 14 pages, 9 figures accepted for publication in Phys. Rev. E v2: added section V (application of presented formalism to chemical potential of the OCP

    Correlations in Hot Asymmetric Nuclear Matter

    Get PDF
    The single-particle spectral functions in asymmetric nuclear matter are computed using the ladder approximation within the theory of finite temperature Green's functions. The internal energy and the momentum distributions of protons and neutrons are studied as a function of the density and the asymmetry of the system. The proton states are more strongly depleted when the asymmetry increases while the occupation of the neutron states is enhanced as compared to the symmetric case. The self-consistent Green's function approach leads to slightly smaller energies as compared to the Brueckner Hartree Fock approach. This effect increases with density and thereby modifies the saturation density and leads to smaller symmetry energies.Comment: 7 pages, 7 figure

    The influence of Pauli blocking effects on the properties of dense hydrogen

    Full text link
    We investigate the effects of Pauli blocking on the properties of hydrogen at high pressures, where recent experiments have shown a transition from insulating behavior to metal-like conductivity. Since the Pauli principle prevents multiple occupation of electron states (Pauli blocking), atomic states disintegrate subsequently at high densities (Mott effect). We calculate the energy shifts due to Pauli blocking and discuss the Mott effect solving an effective Schroedinger equation for strongly correlated systems. The ionization equilibrium is treated on the basis of a chemical approach. Results for the ionization equilibrium and the pressure in the region 4.000 K < T < 20.000 K are presented. We show that the transition to a highly conducting state is softer than found in earlier work. A first order phase transition is observed at T < 6.450 K, but a diffuse transition appears still up to 20.000 K.Comment: 8 pages, 4 figures, version accepted for publication in Journal of Physics A: Mathematical and Theoretical, special issu

    Маркшейдерська школа Національного гірничого університету

    Get PDF
    Викладена історія створення та розвитку маркшейдерської школи в НГУ протягом 110 років.Изложена история создания и развития маркшейдерской школы в НГУ в течение 110 лет.History of creation and development ofsurveyor school is expounded in NMU during 110 years
    corecore