16 research outputs found

    ATM c.7570G>C is a high-risk allele for breast cancer

    Get PDF
    ATM is generally described as a moderate-risk breast cancer susceptibility gene. However, some of ATM variants might encounter higher risk. ATM c.7570G>C, p.Ala2524Pro, (rs769142993) is a pathogenic Finnish founder variant causative for recessively inherited ataxia-telangiectasia. At cellular level, it has been reported to have a dominant-negative effect. ATM c.7570G>C has recurrently been described in Finnish breast cancer families and unselected case cohorts collected from different parts of the country, but the rarity of the allele (MAF 0.0002772 in Finns) and lack of confirming segregation analyses have prevented any conclusive risk estimates. Here, we describe seven families from genetic counseling units with ATM c.7570G>C variant showing co-segregation with breast cancer. Further analysis of the unselected breast cancer cohort from Northern Finland (n = 1822), a geographical region previously indicated to have enrichment of the variant, demonstrated that c.7570G>C significantly associates with breast cancer, and the risk is estimated as high (odds ratio [OR] = 8.5, 95% confidence interval [CI] = 1.04-62.46, P = .018). Altogether, these results place ATM c.7570G>C variant among the high-risk alleles for breast cancer, which should be taken into consideration in genetic counseling

    Clinical and Genetic Characteristics of Finnish Patients with Autosomal Recessive and Dominant Non-Syndromic Hearing Loss Due to Pathogenic TMC1 Variants

    Get PDF
    Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50-60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C>T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A>G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes

    HIDEA syndrome is caused by biallelic, pathogenic, rare or founder P4HTM variants impacting the active site or the overall stability of the P4H-TM protein

    Get PDF
    HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.publishedVersio

    Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study

    Get PDF
    Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.</p

    ATM c.7570G>C is a high-risk allele for breast cancer

    No full text
    Abstract ATM is generally described as a moderate-risk breast cancer susceptibility gene. However, some of ATM variants might encounter higher risk. ATM c.7570G>C, p.Ala2524Pro, (rs769142993) is a pathogenic Finnish founder variant causative for recessively inherited ataxia-telangiectasia. At cellular level, it has been reported to have a dominant-negative effect. ATM c.7570G>C has recurrently been described in Finnish breast cancer families and unselected case cohorts collected from different parts of the country, but the rarity of the allele (MAF 0.0002772 in Finns) and lack of confirming segregation analyses have prevented any conclusive risk estimates. Here, we describe seven families from genetic counseling units with ATM c.7570G>C variant showing co-segregation with breast cancer. Further analysis of the unselected breast cancer cohort from Northern Finland (n = 1822), a geographical region previously indicated to have enrichment of the variant, demonstrated that c.7570G>C significantly associates with breast cancer, and the risk is estimated as high (odds ratio [OR] = 8.5, 95% confidence interval [CI] = 1.04-62.46, P = .018). Altogether, these results place ATM c.7570G>C variant among the high-risk alleles for breast cancer, which should be taken into consideration in genetic counseling

    Clinical and Genetic Characteristics of Finnish Patients with Autosomal Recessive and Dominant Non-Syndromic Hearing Loss Due to Pathogenic <i>TMC1</i> Variants

    No full text
    Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50–60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C>T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A>G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes

    Clinical and Genetic Characteristics of Finnish Patients with Autosomal Recessive and Dominant Non-Syndromic Hearing Loss Due to Pathogenic TMC1 Variants

    No full text
    Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50&ndash;60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C&gt;T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A&gt;G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes

    Pathogenic REST variant causing Jones syndrome and a review of the literature

    No full text
    Abstract Jones syndrome is a rare dominantly inherited syndrome characterized by gingival fibromatosis and progressive sensorineural hearing loss becoming symptomatic in the second decade of life. Here, we report a father and his two daughters presenting with a typical Jones syndrome (OMIM %135550) phenotype. Exome sequencing identified a repressor element 1-silencing transcription factor (REST, OMIM *600571) (NM_005612.5) c.2670_2673del p.(Glu891Profs*6) heterozygous variant segregating with Jones syndrome in the family. We review the clinical data from all previously published patients with Jones syndrome and previously published patients with pathogenic REST variants associated with gingival fibromatosis or sensorineural hearing loss. This study suggests that pathogenic REST variants cause Jones syndrome

    Clinical and genetic characteristics of Finnish patients with autosomal recessive and dominant non-syndromic hearing loss due to pathogenic TMC1 variants

    No full text
    Abstract Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50–60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C>T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A>G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes

    HIDEA syndrome is caused by biallelic, pathogenic, rare or founder P4HTM variants impacting the active site or the overall stability of the P4H-TM protein

    No full text
    Abstract HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease
    corecore