9 research outputs found

    Wärme und Effizienz für die Industrie

    Get PDF
    Im Rahmen der Energiewende haben sich erneuerbare Energien zur Stromerzeugung in Deutschland bereits etabliert. Um jedoch das volle Potenzial der Reduktion von fossilen Energien und Treibhausgasen (THG) auszuschöpfen, muss aus der Energiewende auch eine Wärmewende werden. Der Energieeinsatz für die Wärmebereitstellung der Industrie betrug im Jahr 2012 etwa 535 TWh (22 % des Endenergiebedarfs Deutschlands), hauptsächlich bereitgestellt durch Erdgas (48 %) und Steinkohle (17 %) 1. Damit wurden für die Wärmebereitstellung im Industriesektor rund 159 Mio. t CO2-äq emittiert, was 17 % der THG-Emissionen Deutschlands entspricht. Aufgrund der Vielseitigkeit der einzelnen Branchen und Wärmeanwendungen im Industriesektor kann dieser Beitrag nur beispielhaft einzelne Komponenten für eine Wärmewende aufzeigen, die auch wiederum die Aktivitäten der einzelnen Autoren widerspiegeln. Ausgehend von einer nationalen Betrachtung und expliziten Modellierungsergebnissen für die energieintensive Industrie in NRW, werden einzelne Potenziale und Aktivitäten im Bereich der Wärmebereitstellung, -speicherung und -integration behandelt

    CO2 mitigation accounting for Thermal Energy Storage (TES) case studies

    Full text link
    According to the IPCC, societies can respond to climate changes by adapting to its impacts and by mitigation, that is, by reducing GHG emissions. No single technology can provide all of the mitigation potential in any sector, but many technologies have been acknowledged in being able to contribute to such potential. Among the technologies that can contribute in such potential, Thermal Energy Storage (TES) is not included explicitly, but implicitly as part of technologies such as energy supply, buildings, and industry. To enable a more detailed assessment of the CO2 mitigation potential of TES across many sectors, the group Annex 25 ''Surplus heat management using advanced TES for CO2 mitigation'' of the Energy Conservation through Energy Storage Implementing Agreement (ECES IA) of the International Energy Agency (AEI) present in this article the CO2 mitigation potential of different case studies with integrated TES. This potential is shown using operational and embodied CO2 parameters. Results are difficult to compare since TES is always designed in relation to its application, and each technology impacts the energy system as a whole to different extents. The applications analyzed for operational CO2 are refrigeration, solar power plants, mobile heat storage in industrial waste heat recovery, passive systems in buildings, ATES for a supermarket, greenhouse applications, and dishwasher with zeolite in Germany. The paper shows that the reason for mitigation is different in each application, from energy savings to larger solar share or lowering energy consumption from appliances. The mitigation potential dues to integrated TES is quantified in kg/MW h energy produced or heat delivered. Embodied CO2 in two TES case studies is presented, buildings and solar power plants

    Expertenumfrage: Solare Kühlung – Wie weiter?

    No full text
    Unter dem Aspekt der weiteren Reduzierung des Energieaufwandes für die Kühlung von Produkten und die Klimatisierung von Gebäuden wird die Solarenergie bzw. – allgemeiner formuliert – die erneuerbare Energie in der Zukunft einen entscheidenden Beitrag leisten müssen. Dies zumindest ist ein breiter Konsens in der wissenschaftlichen Gemeinschaft und offensichtlich auch in der Politik. Allerdings wird die deutsche Energiewende häufig als Stromwende interpretiert

    Industrielle Prozesswärme im Kontext eines treibhausgasneutralen Energiesystems

    No full text
    Im Rahmen einer aktuellen Studie zur Transformation des Europäischen Energiesystems zur Klimaneutralität unter Berücksichtigung der Gaskrise entwickelte das Wuppertal Institut ein Szenario (EU27+UK) für die Transformation der europäischen Industrie inklusive Raffinerien und Kokereien, in dem die industriellen Treibhausgasemissionen bis zum Jahr 2050 um 99 % gegenüber 2018 gemindert werden. Der Endenergiebedarf der Industrie sinkt in diesem Szenario durch den Einsatz von Wärmepumpen, andere Energieeffizienzmaßnahmen sowie einen Rückgang der Produktion in Raffinerien bis 2040 deutlich und der Bedarf an fossilen Gasen kann zeitnah gemindert und bis 2045 auf nahezu Null gesenkt werden. Im Rahmen dieses Szenarios erfolgte auch eine detaillierte Abbildung der Entwicklung der Prozesswärmebereitstellung in Deutschland. Die Bereit- stellung von Niedertemperaturwärme (< 150 °C) erfolgt im Szenario größtenteils über Wärmepumpen und Fernwärme. Solar- und Geothermie spielen eine (kleinere) Rolle. Für die Dampfbereitstellung (150 - 500 °C) werden vielfach hybride Strom/H2-Kessel eingesetzt, daneben Biomasse. In der Chemieindustrie spielen auch langfristig Reststoffe aus Steamcrackern eine wichtige Rolle. Die Bereitstellung von Hochtemperaturwärme erfolgt prozessspezifisch je nach den technischen Gegebenheiten der Prozesse (z. B. H2 in den Direktreduktions- anlagen und Biomasse in den Walzwerken der Stahlindustrie, abfallbasierte Brennstoffe vor allem in den Klinkeröfen der Zementindustrie, Biomethan und Strom in der Glasindustrie, Strom für Primär- und Sekundäraluminium). Biogene Energieträger in Kombination mit CCS (BECCS) ermöglichen in der Stahlindustrie und in der mineralischen Industrie die Bereitstellung von Hochtemperaturwärme und gleichzeitig negative Emissionen zur Kompensation von Restemissionen

    CO2 mitigation accounting for Thermal Energy Storage (TES) case studies

    No full text
    According to the IPCC, societies can respond to climate changes by adapting to its impacts and by mitigation, that is, by reducing GHG emissions. No single technology can provide all of the mitigation potential in any sector, but many technologies have been acknowledged in being able to contribute to such potential. Among the technologies that can contribute in such potential, Thermal Energy Storage (TES) is not included explicitly, but implicitly as part of technologies such as energy supply, buildings, and industry. To enable a more detailed assessment of the CO2 mitigation potential of TES across many sectors, the group Annex 25 ''Surplus heat management using advanced TES for CO2 mitigation'' of the Energy Conservation through Energy Storage Implementing Agreement (ECES IA) of the International Energy Agency (AEI) present in this article the CO2 mitigation potential of different case studies with integrated TES. This potential is shown using operational and embodied CO2 parameters. Results are difficult to compare since TES is always designed in relation to its application, and each technology impacts the energy system as a whole to different extents. The applications analyzed for operational CO2 are refrigeration, solar power plants, mobile heat storage in industrial waste heat recovery, passive systems in buildings, ATES for a supermarket, greenhouse applications, and dishwasher with zeolite in Germany. The paper shows that the reason for mitigation is different in each application, from energy savings to larger solar share or lowering energy consumption from appliances. The mitigation potential dues to integrated TES is quantified in kg/MW h energy produced or heat delivered. Embodied CO2 in two TES case studies is presented, buildings and solar power plants
    corecore