637 research outputs found

    Extracting high fidelity quantum computer hardware from random systems

    Full text link
    An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra, Australia and Lund, Sweden, and the present description follows more closely the Lund work. Techniques will be described that include optimal filtering of the initially inhomogeneously broadened profile down to well separated and narrow ensembles, as well as the use of advanced pulse-shaping in order to achieve robust arbitrary single-qubit operations with fidelities above 90%, as characterized by quantum state tomography. It is expected that full scalability of these systems will require the ability to determine the state of single rare-earth ions. It has been proposed that this can be done using special readout ions doped into the crystal and an update is given on the work to find and characterize such ions. Finally, a few aspects on the possibilities for remote entanglement of ions in separate rare-earth-ion-doped crystals are considered.Comment: 19 pages, 9 figures. Written for The Proceedings of the Nobelsymposium on qubits for future quantum computers, Gothenburg, May-0

    Storage and recall of weak coherent optical pulses with an efficiency of 25%

    Full text link
    We demonstrate experimentally a quantum memory scheme for the storage of weak coherent light pulses in an inhomogeneously broadened optical transition in a Pr^{3+}: YSO crystal at 2.1 K. Precise optical pumping using a frequency stable (about 1kHz linewidth) laser is employed to create a highly controllable Atomic Frequency Comb (AFC) structure. We report single photon storage and retrieval efficiencies of 25%, based on coherent photon echo type re-emission in the forward direction. The coherence property of the quantum memory is proved through interference between a super Gaussian pulse and the emitted echo. Backward retrieval of the photon echo emission has potential for increasing storage and recall efficiency.Comment: 5,

    High fidelity readout scheme for rare-earth solid state quantum computing

    Full text link
    We propose and analyze a high fidelity readout scheme for a single instance approach to quantum computing in rare-earth-ion-doped crystals. The scheme is based on using different species of qubit and readout ions, and it is shown that by allowing the closest qubit ion to act as a readout buffer, the readout error can be reduced by more than an order of magnitude. The scheme is shown to be robust against certain experimental variations, such as varying detection efficiencies, and we use the scheme to predict the expected quantum fidelity of a CNOT gate in these solid state systems. In addition, we discuss the potential scalability of the protocol to larger qubit systems. The results are based on parameters which we believed are experimentally feasible with current technology, and which can be simultaneously realized.Comment: 7 pages, 5 figure

    Spectroscopic measurements of streamer filaments in electric breakdown in a dielectric liquid

    Get PDF
    Emission spectroscopy has been utilized to provide information about the electron density and temperature in streamers and breakdown arcs in transformer oil. Recorded spectra include strongly broadened hydrogen Balmer-alpha lines and vibration/rotation band profiles of the C-2 molecule. The origin of the observed broadening of hydrogen lines is discussed and it is concluded that it arises mainly from collisions with charged particles, so-called dynamic Stark broadening. By assuming that the broadening is due solely to dynamic Stark broadening, electron densities between 1 x 10(18) and 1 x 10(19) cm(-3) were obtained for the rear of positive streamer filaments during the later stages of propagation. For negative streamers we obtained an upper limit of 3 x 10(16) cm(-3) and for breakdown arcs electron densities up to 4 x 10(18) cm(-3). The temperature information in the C-2 emission profiles and the intensity ratio of the hydrogen Balmer lines are discussed. Rough estimations of the temperature are presented both for positive and for negative streamers

    Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage

    Get PDF
    Coherent control of collective spontaneous emission in an extended atomic ensemble resonantly interacting with single-photon wave packets is analyzed. A scheme for coherent manipulation of collective atomic states is developed such that superradiant states of the atomic system can be converted into subradiant ones and vice versa. Possible applications of such a scheme for optical quantum state storage and single-photon wave packet shaping are discussed. It is shown that also in the absence of inhomogeneous broadening of the resonant line, single-photon wave packets with arbitrary pulse shape may be recorded as a subradiant state and reconstructed even although the duration of the wave packets is larger than the superradiant life-time. Specifically the applicability for storing time-bin qubits, which are used in quantum cryptography is analyzed.Comment: 11 pages, 4 figures, submitted to PR

    Quantum memory for non-stationary light fields based on controlled reversible inhomogeneous broadening

    Get PDF
    We propose a new method for efficient storage and recall of non-stationary light fields, e.g. single photon time-bin qubits, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening. We briefly discuss experimental realizations of our proposal.Comment: 4 page

    Electrically Switchable Photonic Molecule Laser

    Full text link
    We have studied the coherent intercavity coupling of the evanescent fields of the whispering gallery modes of two terahertz quantum-cascade lasers implemented as microdisk cavities. The electrically pumped single-mode operating microcavities allow to electrically control the coherent mode coupling for proximity distances of the cavities up to 30-40 \mu\m. The optical emission of the strongest coupled photonic molecule can be perfectly switched by the electrical modulation of only one of the coupled microdisks. The threshold characteristics of the strongest coupled photonic molecule demonstrates the linear dependence of the gain of a quantum-cascade laser on the applied electric field.Comment: 4 pages, 4 figure

    Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis

    Get PDF
    A method combining laser-induced fluorescence and principal component analysis to detect and discriminate between algal and fungal growth on insulator materials has been studied. Eight fungal cultures and four insulator materials have been analyzed. Multivariate classifications were utilized to characterize the insulator material, and fungal growth could readily be distinguished from a clean surface. The results of the principal component analyses make it possible to distinguish between algae infected, fungi infected, and clean silicone rubber materials. The experiments were performed in the laboratory using a fiber-optic fluorosensor that consisted of a nitrogen laser and an optical multi-channel analyzer system
    • …
    corecore