7 research outputs found

    Enhanced Detection of Human Plasma Proteins on Nanostructured Silver Surfaces

    Get PDF
    In chemical and medical research, recent methods combine the tools of nanotechnology, chemistry and biology in a way that introduces the most modern processes to current medical practice. The main blood plasma proteins – albumin and globulin and their amino acid sequences, are carriers of important information about human health. In this paper we employed silver nanostructured surfaces prepared by electrodeposition. Consequently, electrochemical deposition is introduced as a convenient, fast and cost‐effective method for the preparation of metallic nanostructures with required morphology. Silver nanostructured surfaces were applied as the templates for Surface Enhanced Raman Spectroscopy (SERS) of albumin and globulin in the role of model analytes. We also studied the effect of a working electrode polishing process on electrodeposition and identification of proteins. The aqueous solutions of albumin and globulin were applied onto these Ag nanostructured substrates separately. An analytical signal enhancement factor of 3.6×102 was achieved for a band with a Raman shift of 2104cm‐1 for globulin deposited onto silver nanostructured film on unpolished stainless steel substrate. The detection limit was 400µg/mL. Plasma or serum could present a preferable material for non‐invasive cancer disease diagnosis using the SERS method

    Electrochemical deposition of a hydroxyapatite layer onto the surface of porous additively manufactured Ti6Al4V scaffolds

    No full text
    Successful acceptance of biomaterials by a patient's body significantly depends on an interaction between the surface and the biological components of the host environment. In the case of orthopedic scaffolds, surface treatment may improve their osseointegration. This study deals with the electrochemical deposition of ceramic hydroxyapatite (HAp) coatings onto additively manufactured titanium specimens with a porous structure. The specimens of three different types (pore sizes of 200, 400, and 600 μm) were modeled using CAD software and fabricated using the Ti6Al4V titanium alloy. HAp coatings were electrochemically deposited onto the surface of un-annealed specimens using four different experimental conditions. Based on the results and optimization of the conditions with the un-annealed specimens, ideal conditions were selected for the coating of the annealed specimens. The nature of the ceramic layer on un-annealed and annealed samples was compared. Surface morphology and distribution of ceramic coatings on the surface of the specimens were compared and evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The un-annealed specimens exhibited more compact surfaces and larger deposits of nanocrystalline HAp when compared to the annealed specimens. The results indicate that electrochemical deposition is a suitable method for the production of a ceramic coating layer onto the surface of porous titanium specimens with promising potential for clinical applications. © 2023 Elsevier B.V.ITMS2014, RP/CPS/2022/005; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-20-0278; European Regional Development Fund, ERD

    Degradation Performance of Open-Cell Biomaterials from Phosphated Carbonyl Iron Powder with PEG Coating

    No full text
    Advances in biomedicine and development of modern technologies in the last century have fostered the improvement in human longevity and well-being. This progress simultaneously initiated the need for novel biomaterials. Recently, degradable metallic biomaterials have attracted serious attention in scientific and clinical research owing to their utilization in some specific applications. This work investigates the effect of the polyethylene glycol (PEG) coating of open-cell iron and phosphorus/iron foams on their microstructure and corrosion properties. The addition of phosphorus causes a slight increase in pore size and the deposition of a polymer coating results in a smoothened surface and a moderate decrease in pore diameter. The PEG coating leads to an increase in corrosion rates in both foams and potentially a more desirable product

    Additive Manufacturing of Porous Ti6Al4V Alloy: Geometry Analysis and Mechanical Properties Testing

    No full text
    This work is devoted to the research of porous titanium alloy structures suitable for use in biomedical applications. Mechanical properties were examined on six series of samples with different structures and porosity via static compressive test to identify the type of structure suitable for elimination of the “stress shielding” effect. In addition, high porosity is desirable due to the overgrowth of bone tissue into the internal structure of the implant. The samples were made of titanium alloy Ti6Al4V by using selective laser melting (SLM) additive manufacturing. The series of samples differ from each other in pore size (200, 400, and 600 µm) and porous structure topology (cubic or trabecular). The actual weight of all samples, which plays an important role in identifying other characteristics, was determined. Compressive tests were focused on the detection of maximum stress. The highest porosity and thus the lowest weight were achieved in the samples with a trabecular structure and 600 µm pore size. All tested samples reached optimal values of maximum stress and tensile strength. The most appropriate mechanical properties were observed for samples with a 200 µm pore diameter and cubic structure

    In Vitro Corrosion Behavior of Biodegradable Iron Foams with Polymeric Coating

    No full text
    Research in the field of biodegradable metallic scaffolds has advanced during the last decades. Resorbable implants based on iron have become an attractive alternative to the temporary devices made of inert metals. Overcoming an insufficient corrosion rate of pure iron, though, still remains a problem. In our work, we have prepared iron foams and coated them with three different concentrations of polyethyleneimine (PEI) to increase their corrosion rates. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy were used for characterization of the polymer coating. The corrosion behavior of the powder-metallurgically prepared samples was evaluated electrochemically using an anodic polarization method. A 12 weeks long in vitro degradation study in Hanks’ solution at 37 °C was also performed. Surface morphology, corrosion behavior, and degradation rates of the open-cell foams were studied and discussed. The use of PEI coating led to an increase in the corrosion rates of the cellular material. The sample with the highest concentration of PEI film showed the most rapid corrosion in the environment of simulated body fluids

    An In Vitro Corrosion Study of Open Cell Iron Structures with PEG Coating for Bone Replacement Applications

    Get PDF
    Iron-based substrates with polyethylene glycol coating were prepared as possible materials for biodegradable orthopedic implants. Biodegradable materials that provide mechanical support of the diseased tissue at the time of implanting and then disappear gradually during the healing process are sometimes favored instead of permanent implants. The implant degradation rate should match the time of the tissue regrowth. In this work, the degradation behavior of iron-based foams was studied electrochemically during immersion tests in Hanks’ solution. The corrosion rate of the polyethylene glycol-coated samples increased and the corrosion potential shifted to more negative values. This indicates an enhanced degradation rate as compared to the uncoated material, fulfilling the goal of being able to tune the degradation rate. It is the interfacial interaction between the hydrophilic polymer layer and the iron surface that is responsible for the enhanced oxidation rate of iron

    Degradation performance of open-cell biomaterials from phosphated carbonyl iron powder with PEG coating

    No full text
    Advances in biomedicine and development of modern technologies in the last century have fostered the improvement in human longevity and well-being. This progress simultaneously initiated the need for novel biomaterials. Recently, degradable metallic biomaterials have attracted serious attention in scientific and clinical research owing to their utilization in some specific applications. This work investigates the effect of the polyethylene glycol (PEG) coating of open-cell iron and phosphorus/iron foams on their microstructure and corrosion properties. The addition of phosphorus causes a slight increase in pore size and the deposition of a polymer coating results in a smoothened surface and a moderate decrease in pore diameter. The PEG coating leads to an increase in corrosion rates in both foams and potentially a more desirable product
    corecore