405 research outputs found

    Zero-bias anomalies of point contact resistance due to adiabatic electron renormalization of dynamical defects

    Full text link
    We study effect of the adiabatic electron renormalization on the parameters of the dynamical defects in the ballistic metallic point contact. The upper energy states of the ``dressed'' defect are shown to give a smaller contribution to a resistance of the contact than the lower energy ones. This holds both for the "classical" renormalization related to defect coupling with average local electron density and for the "mesoscopic" renormalization caused by the mesoscopic fluctuations of electronic density the dynamical defects are coupled with. In the case of mesoscopic renormalization one may treat the dynamical defect as coupled with Friedel oscillations originated by the other defects, both static and mobile. Such coupling lifts the energy degeneracy of the states of the dynamical defects giving different mesoscopic contribution to resistance, and provides a new model for the fluctuator as for the object originated by the electronic mesoscopic disorder rather than by the structural one. The correlation between the defect energy and the defect contribution to the resistance leads to zero-temperature and zero-bias anomalies of the point contact resistance. A comparison of these anomalies with those predicted by the Two Channel Kondo Model (TCKM) is made. It is shown, that although the proposed model is based on a completely different from TCKM physical background, it leads to a zero-bias anomalies of the point contact resistance, which are qualitatively similar to TCKM predictions.Comment: 6 pages, to be published in Phys. Rev.

    Stretching dependence of the vibration modes of a single-molecule Pt-H2-Pt bridge

    Get PDF
    A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G_0 = 2e^2/h, carried by a single channel. Using point contact spectroscopy three vibration modes are observed and their variation upon stretching and isotope substitution is obtained. The interpretation of the experiment in terms of a Pt-H_2-Pt bridge is verified by Density Functional Theory calculations for the stability, vibrational modes, and conductance of the structure.Comment: 5 pages, 4 figure

    Electrical Manipulation of Nanomagnets

    Full text link
    We demonstrate a possibility to manipulate the magnetic coupling between two nanomagnets with a help of ac electric field. In the scheme suggested the magnetic coupling in question is mediated by a magnetic particle contacting with both of the nanomagnets through the tunnel barriers. The electric field providing a successive suppression of the barriers leads to pumping of magnetization through the mediating particle. Time dependent dynamics of the particle magnetization allows to to switch between ferro- and antiferromagnetic couplings.Comment: 4 pages, 2 figure

    1/f1/f noise in variable range hopping conduction

    Full text link
    A mechanism of 1/f1/f noise due to traps formed by impurities which have no neighbors with close energies in their vicinity is studied. Such traps slowly exchange electrons with the rest of conducting media. The concentration of traps and proportional to it 1/f1/f noise exponentially grow with decreasing temperature in the variable range hopping regime. This theory provides smooth transition to the nearest neighbor hopping case where it predicts a very weak temperature dependence

    Non-Gaussian dephasing in flux qubits due to 1/f-noise

    Full text link
    Recent experiments by F. Yoshihara et al. [Phys. Rev. Lett. 97, 167001 (2006)] and by K. Kakuyanagi et al. (cond-mat/0609564) provided information on decoherence of the echo signal in Josephson-junction flux qubits at various bias conditions. These results were interpreted assuming a Gaussian model for the decoherence due to 1/f noise. Here we revisit this problem on the basis of the exactly solvable spin-fluctuator model reproducing detailed properties of the 1/f noise interacting with a qubit. We consider the time dependence of the echo signal and conclude that the results based on the Gaussian assumption need essential reconsideration.Comment: Improved fitting parameters, new figur

    Slow relaxation of conductance of amorphous hopping insulators

    Full text link
    We discuss memory effects in the conductance of hopping insulators due to slow rearrangements of structural defects leading to formation of polarons close to the electron hopping states. An abrupt change in the gate voltage and corresponding shift of the chemical potential change populations of the hopping sites, which then slowly relax due to rearrangements of structural defects. As a result, the density of hopping states becomes time dependent on a scale relevant to rearrangement of the structural defects leading to the excess time dependent conductivity.Comment: 6 pages, 1 figur

    Enhanced spontaneous emission from inhomogeneous ensembles of quantum dots is induced by short-range couplings

    Full text link
    We study theoretically the spontaneous emission from an inhomogeneous ensemble of quantum dots in the weak excitation limit. We show that collective, superradiance-like effects lead to an enhanced emission rate in the presence of sufficiently strong coupling between the dots in agreement with experimental observations, which means that the quantum dot sample cannot be treated as an ensemble of individual emitters. We demonstrate also that the collective behavior of the quantum dot system relies on short-range interactions, while long-range dipole couplings are too weak to have any impact on the emission dynamics for a system with a realistic degree of inhomogeneity.Comment: 5 pages, 3 figures, moderate modification
    • 

    corecore