28 research outputs found

    Lanthanum-Gallium Tantalate Crystals and their Electrophysical Characterization

    Get PDF
    Lanthanum-gallium tantalate single crystal (La3Ta0.5Ga5.5O14, langatate, LGT) is a perspective piezoe-lectric material as an active component of pressure sensors. An investigation of the growth conditions in-fluence (the growth atmosphere) on the electrophysical сharacterization of LGT, obtained in different at-mospheres (Ar, Ar + O2) was carried out. The frequency dependences of the relative dielectric constant (Ρ11/Ρ0) and of the admittance depend on the growth atmosphere. The langatate electrophysical сharacteri-zation in alternating electric fields were analyzed by means of the impedance spectr oscopy method. The behavior of short circuit currents in specimens of polar cuts of LGT single crystals with the same material electrodes without preliminary polarization is described. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3628

    Savaime sklindančios aukΕ‘tatemperatΕ«rinΔ—s sintezΔ—s bΕ«du gautΕ³ aliuminio oksinitrido milteliΕ³ ir jΕ³ keramikΕ³ optinΔ—s savybΔ—s

    No full text
    The reported study was funded by RFBR according to the Research Project No. 19-08-00655. V.P. acknowledges the State Research Program β€˜Aug-stas enerΔ£ijas fizika un paātrinātāju tehnoloΔ£ijas’ (Projekta Nr. VPP-IZM-CERN-2020/1-0002). The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, Project CAMART2.The synthesis method of aluminium oxynitride (AlON) powders by nitriding of Al/Al2 O3 mixture under high-pressure nitrogen is proposed. The novelty of this method consists in adding KClO4 or Mg(ClO4 )2 and extra Al into the starting mixture (Al+Al2 O3 ) to cause the exothermal aluminium oxidation reaction, which therefore initiates the aluminium nitriding reaction. The microstructure and phase composition of the AlON powders obtained by self-propagating high-temperature synthesis are demonstrated by means of SEM and XRD analysis. Diffuse reflection spectra of AlON powders have been measured and the values of band-gap energy have been calculated. Optical transmission and reflection characteristics of the AlON ceramic samples sintered from AlON powders at 1930Β°C have been studied. The influence of the technological parameters of ceramics production on their transparency is revealed – the most transparent sample is obtained from the powders synthesized with the Mg(ClO4 )2 additive and sintered for 6 h. Β© Lietuvos mokslΕ³ akademija, 2021.RFBR according to the Research Project No. 19-08-00655; National Research Program VPP-IZM-CERN-2020/1-0002; the Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, Project CAMART2

    ИзмСнСниС ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ эритроцитов послС дСйствия моноксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π½Π° ΠΊΡ€ΠΎΠ²ΡŒ in vitro

    No full text
    Background: One of the pathological effects of carbon monoxide (CO) on blood is the formation of carboxyhemoglobin. Carboxyhemoglobin completely blocks oxygen transfer; therefore, there is a net decrease in oxygen transport by red blood cells potentially resulting in tissue hypoxia. The effects of CO on blood can also damage cell membranes. Atomic force microscopy (AFM) has been recognized as effective for investigation into the mechanisms of structural damage in erythrocyte membranes. Aim: By means of AFM, to identify characteristics of changes in morphology and aggregation of erythrocytes exposed to CO in vitro.Materials and methods: All experiments were performed in vitro. We studied the morphology of erythrocytes and their aggregates with AFM. Blood sampling (150 ΞΌl) in microvettes with EDTA (Sarstedt AG Co., Germany) was carried out during a prophylactic work-up of 5 volunteers. To obtain CO in a test tube, formic acid was mixed with sulfuric acid 1:1. Blood levels of carboxyhemoglobin were measured by spectrophotometry. A nonlinear fitting method of the experimental spectra was used to calculate the concentrations of hemoglobin derivatives in blood. Statistical analysis was done with the Origin software (OriginLab Corporation, Northampton, MA, USA).Results: After CO exposure, a shift in peaks was observed. At exposure time tβ‚‚=320 s, the percentage of carboxyhemoglobin (CHbCO) was 88Β±2%. As a result of blood exposure to CO, at t₁=160 s 10% of the cells differed in their shape from discocytes, whereas at tβ‚‚=320 s their proportion was 38%. With increasing duration of exposure to CO, erythrocyte aggregation occurred with formation of their large conglomerates up to 30 ΞΌm in size. In the control smear, the proportion of discocytes was 96Β±2%, and the remaining 4Β±1% of the cells had the form of echinocytes. The cell diameter (Dcont) was in the range 7.5Β±0.8 ΞΌm. After blood exposure to CO at t₁=160 s in the monolayer, 28Β±5% of cells had a diameter less than5.7 ΞΌm. After CO exposure at tβ‚‚=320 s, the proportion of cells with a diameter of less than5.7 ΞΌm increased to 72Β±11%.Conclusion: The experiments have shown that blood exposure to CO changed the morphology of erythrocytes. The formation of interconnected structures made of red blood cells was observed. With increased time of exposure, erythrocytes demonstrated aggregation with conglomerate formation.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Одно ΠΈΠ· патологичСских дСйствий моноксида ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° (БО) Π½Π° ΠΊΡ€ΠΎΠ²ΡŒ – ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ карбоксигСмоглобина. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ карбоксигСмоглобин ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π±Π»ΠΎΠΊΠΈΡ€ΡƒΠ΅Ρ‚ пСрСнос кислорода, происходит суммарноС сниТСниС транспорта кислорода эритроцитами. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ гипоксия Π² тканях. ВоздСйствиС БО Π½Π° ΠΊΡ€ΠΎΠ²ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ силовой микроскопии (АБМ) ΠΏΡ€ΠΈΠ·Π½Π°Π½ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ для изучСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² структурных ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ Π² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ… эритроцитов.ЦСль – с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ АБМ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ особСнности измСнСния ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ эритроцитов Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСйствия БО in vitro.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ВсС экспСримСнты Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ in vitro. ИсслСдовали ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ эритроцитов, ΠΈΡ… Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ АБМ. Π—Π°Π±ΠΎΡ€ ΠΊΡ€ΠΎΠ²ΠΈ (150 ΠΌΠΊΠ») проводился Π² ΠΌΠΈΠΊΡ€ΠΎΠ²Π΅Ρ‚Ρ‹ с ЭДВА (Sarstedt AG Co., ГСрмания) Π²ΠΎ врСмя профилактичСского обслСдования 5 Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π². Для получСния CO Π² ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΊΠ΅ смСшивали Π² ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ 1:1 ΠΌΡƒΡ€Π°Π²ΡŒΠΈΠ½ΡƒΡŽ ΠΈ ΡΠ΅Ρ€Π½ΡƒΡŽ кислоты. Для измСрСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ карбоксигСмоглобина Π² ΠΊΡ€ΠΎΠ²ΠΈ использовали спСктрофотомСтричСский ΠΌΠ΅Ρ‚ΠΎΠ΄, для вычислСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π² ΠΊΡ€ΠΎΠ²ΠΈ – ΠΌΠ΅Ρ‚ΠΎΠ΄ β€œnonlinear fitting” ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… спСктров. Π‘Ρ‚Π°Ρ‚ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Origin (OriginLab Corporation, БША).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ПослС воздСйствия БО происходило смСщСниС ΠΏΠΈΠΊΠΎΠ². ΠŸΡ€ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ воздСйствия tβ‚‚=320 c ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π½ΠΎΠ΅ содСрТаниС карбоксигСмоглобина составило CHbCO =88Β±2%. ΠŸΡ€ΠΈ t₁=160 c 10% ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠΌΠ΅Π»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒ, ΠΎΡ‚Π»ΠΈΡ‡Π½ΡƒΡŽ ΠΎΡ‚ дискоцитов, ΠΏΡ€ΠΈ tβ‚‚=320 c – 38% ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠŸΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ воздСйствия БО происходила агрСгация эритроцитов ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚ΠΎΠ² Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ Π΄ΠΎ 30 ΠΌΠΊΠΌ. Π’ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΌΠ°Π·ΠΊΠ΅ доля дискоцитов составляла 96Β±2%, Π° ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ 4Β±1% ΠΈΠΌΠ΅Π»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒ эхиноцитов. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π±Ρ‹Π» Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ DΠΊΠΎΠ½Ρ‚Ρ€=7,5Β±0,8 ΠΌΠΊΠΌ. ПослС воздСйствия БО t₁=160 c Π½Π° ΠΊΡ€ΠΎΠ²ΡŒ Π² монослоС наблюдалось 28Β±5% ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ (D)5,7 ΠΌΠΊΠΌ. ПослС воздСйствия БО tβ‚‚=320 c ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ D5,7 ΠΌΠΊΠΌ увСличился Π΄ΠΎ 72Β±11%.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ воздСйствиС БО Π½Π° ΠΊΡ€ΠΎΠ²ΡŒ Π²Ρ‹Π·Ρ‹Π²Π°Π»ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ эритроцитов. Наблюдалось Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ связанных ΠΌΠ΅ΠΆΠ΄Ρƒ собой эритроцитарных структур. ΠŸΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ воздСйствия Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»Π° агрСгация эритроцитов ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚ΠΎΠ²

    ΠžΠ¦Π•ΠΠšΠ Π’Π›Π˜Π―ΠΠ˜Π― Π›Π˜Π“ΠΠžΠ“Π£ΠœΠΠ’Π НА ΠŸΠžΠ§Π’Π«, ЗАГРЯЗНЕННЫЕ Π’Π«Π‘Π ΠžΠ‘ΠΠœΠ˜ Π’Π―Π–Π•Π›Π«Π₯ ΠœΠ•Π’ΠΠ›Π›ΠžΠ’ ΠœΠ•Π”Π•ΠŸΠ›ΠΠ’Π˜Π›Π¬ΠΠžΠ“Πž Π—ΠΠ’ΠžΠ”Π, ΠœΠ•Π’ΠžΠ”ΠžΠœ Π€Π˜Π’ΠžΠ’Π•Π‘Π’Π˜Π ΠžΠ’ΠΠΠ˜Π―

    No full text
    The effect of industrial remediants (lignohumate) by phyto-testing on different types of soils of the Middle Urals, in the Pervouralsk copper plant area, was revealed. Soil treatment with remediants was carried out in vegetation and laboratory experiments on 15 soil samples taken from the upper soil layer (0-15 cm) of the studied soils (brown soil, sod-podzolic) in the area of contamination (copper smelter). A decrease in the toxic effect of the studied heavy metals (Cu, Zn Cd, Pb) under the action of lignohumates in soil samples with a high humus content was revealed. In humus-depleted soils, the addition of a dose of lignohumate did not significantly affect the content of the studied pollutants in them.ВыявлСно воздСйствиС ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‚ΠΎΠ² (Π»ΠΈΠ³Π½ΠΎΠ³ΡƒΠΌΠ°Ρ‚Π°) ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ„ΠΈΡ‚ΠΎ-тСстирования Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠ°Ρ… ΠΏΠΎΡ‡Π² Π‘Ρ€Π΅Π΄Π½Π΅Π³ΠΎ Π£Ρ€Π°Π»Π° Π² Ρ€Π°ΠΉΠΎΠ½Π΅ ΠŸΠ΅Ρ€Π²ΠΎΡƒΡ€Π°Π»ΡŒΡΠΊΠΎΠ³ΠΎ мСдСплавильного Π·Π°Π²ΠΎΠ΄Π°. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΡ‡Π² Ρ€Π΅ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… экспСримСнтах Π½Π° 15 ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΠΎΡ‡Π², ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΈΠ· Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎΠ³ΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π° (0-15 см) исслСдуСмых ΠΏΠΎΡ‡Π² (Π±ΡƒΡ€ΠΎΠ·Ρ‘ΠΌ, Π΄Π΅Ρ€Π½ΠΎΠ²ΠΎ-подзолистая) Π² Ρ€Π°ΠΉΠΎΠ½Π΅ загрязнСния (ΠΌΠ΅Π΄Π΅ΠΏΠ»Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ Π·Π°Π²ΠΎΠ΄). ВыявлСно сниТСниС токсичСского эффСкта исслСдованных тяТёлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² (Cu, Zn Cd, Pb) ΠΏΠΎΠ΄ дСйствиСм Π»ΠΈΠ³Π½ΠΎΠ³ΡƒΠΌΠ°Ρ‚Π° Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΠΎΡ‡Π² с высоким содСрТаниСм гумуса. Π’ ΠΎΠ±Π΅Π΄Π½Π΅Π½Π½Ρ‹Ρ… гумусом ΠΏΠΎΡ‡Π²Π°Ρ… Π΄ΠΎΠ±Π°Π²ΠΊΠ° Π΄ΠΎΠ·Ρ‹ Π»ΠΈΠ³Π½ΠΎΠ³ΡƒΠΌΠ°Ρ‚Π° Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»Π° сущСствСнного влияния Π½Π° содСрТаниС Π² Π½ΠΈΡ… исслСдованных ΠΏΠΎΠ»Π»ΡŽΡ‚Π°Π½Ρ‚ΠΎΠ²

    Spiral phase plate with multiple singularity centers

    No full text
    РассмотрСна ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠΏΠΈΡ€Π°Π»ΡŒΠ½Π°Ρ фазовая пластинка, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ имССтся мноТСство Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² сингулярности Ρ„Π°Π·Ρ‹, располоТСнных Π² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Π² плоскости пластинки. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Π΅ выраТСния для топологичСского заряда Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠ³ΠΎ поля Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ плоскости сразу Π·Π° ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ ΡΠΏΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„Π°Π·ΠΎΠ²ΠΎΠΉ пластинкой ΠΈ Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΏΡƒΡ‡ΠΊΠ° ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°. ВопологичСский заряд Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ плоскости Ρ€Π°Π²Π΅Π½ суммС топологичСских зарядов ΠΊΠ°ΠΆΠ΄ΠΎΠΉ сингулярности, Ссли ΠΈΡ… Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ находятся Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΡ€ΡƒΠ³Π»ΠΎΠΉ Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρ‹ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ радиуса. Если Ρ‡Π°ΡΡ‚ΡŒ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² сингулярности Ρ„Π°Π·Ρ‹ Π»Π΅ΠΆΠΈΡ‚ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ ΠΊΡ€ΡƒΠ³Π»ΠΎΠΉ Π΄ΠΈΠ°Ρ„Ρ€Π°Π³ΠΌΡ‹, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ ΠΎΠ±Ρ‹Ρ‡Π½ΡƒΡŽ ΡΠΏΠΈΡ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ„Π°Π·ΠΎΠ²ΡƒΡŽ пластинку, Ρ‚ΠΎ ΠΈΡ… топологичСский заряд Π² суммС Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° 2. ΠžΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ зависит ΠΎΡ‚ располоТСния Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² сингулярности: Ρ‡Π΅ΠΌ дальшС ΠΎΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π° пластинки располоТСн Ρ†Π΅Π½Ρ‚Ρ€ сингулярности, Ρ‚Π΅ΠΌ мСньшС Π²ΠΊΠ»Π°Π΄ Π² ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Если всС Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ сингулярности Π»Π΅ΠΆΠ°Ρ‚ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡΠΏΠΈΡ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ„Π°Π·ΠΎΠ²ΡƒΡŽ пластинку Π΄ΠΈΠ°Ρ„Ρ€Π°Π³ΠΌΡ‹, Ρ‚ΠΎ ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΏΡƒΡ‡ΠΊΠ° Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, хотя топологичСский заряд ΠΏΡƒΡ‡ΠΊΠ° Π² этом случаС Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π΅Π½ ΠΎΡ‚ нуля. We investigate a multispiral phase plate (MSPP) with multiple centers of phase singularity arbitrarily located in the MSPP plane. Equations to describe the topological charge of an optical vortex in the initial plane immediately behind the MSPP and orbital angular momentum (OAM) normalized relative to the beam power are derived. The topological charge in the initial plane is found as a sum of the topological charges of all singularities if their centers are located inside a finite-radius circular aperture. If the phase singularity centers are partially located on the boundary of a circular diaphragm limiting the MSPP, the total topological charge is found as the sum of all singularities divided by 2. Total OAM that the vortex carries depends on the location of the singularity centers: the farther from the center of the plate the singularity center is located, the smaller is its contribution to the OAM. If all singularity centers are located on the boundary of the diaphragm limiting MSPP, then the OAM of the vortex beam equals zero, although in this case the topological charge of the beam is nonzero.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Российского Ρ„ΠΎΠ½Π΄Π° Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований (Π³Ρ€Π°Π½Ρ‚ 18-29-20003, расчСт топологичСского заряда), Российского Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ½Π΄Π° (Π³Ρ€Π°Π½Ρ‚ 18-19-00595, расчСт ΠΎΡ€Π±ΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° Π½Π°ΡƒΠΊΠΈ ΠΈ Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ образования Π Π€ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… выполнСния Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ГосударствСнному заданию ЀНИЦ Β«ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ ΠΈ Ρ„ΠΎΡ‚ΠΎΠ½ΠΈΠΊΠ°Β» РАН (Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования)

    Ru/CdS Quantum Dots Templated on Clay Nanotubes as Visible-Light-Active Photocatalysts: Optimization of S/Cd Ratio and Ru Content

    No full text
    Β© 2020 Wiley-VCH GmbH A nanoarchitectural approach based on in situ formation of quantum dots (QDs) within/outside clay nanotubes was developed. Efficient and stable photocatalysts active under visible light were achieved with ruthenium-doped cadmium sulfide QDs templated on the surface of azine-modified halloysite nanotubes. The catalytic activity was tested in the hydrogen evolution reaction in aqueous electrolyte solutions under visible light. Ru doping enhanced the photocatalytic activity of CdS QDs thanks to better light absorption and electron–hole pair separation due to formation of a metal/semiconductor heterojunction. The S/Cd ratio was the major factor for the formation of stable nanoparticles on the surface of the azine-modified clay. A quantum yield of 9.3 % was reached by using Ru/CdS/halloysite containing 5.2 wt % of Cd doped with 0.1 wt % of Ru and an S/Cd ratio of unity. In vivo and in vitro studies on the CdS/halloysite hybrid demonstrated the absence of toxic effects in eukaryotic cells and nematodes in short-term tests, and thus they are promising photosensitive materials for multiple applications
    corecore