14 research outputs found

    NEONICOTINOID TOXICITY IN REPRODUCTIVE HONEY BEE CASTES

    Get PDF
    High pollinator losses of recent decades have been attributed to several causes including increased exposure to pesticides, particularly neonicotinoid insecticides. This has spiked re-evaluation of neonicotinoid use in agriculture and has heightened the need to enhance pesticide risk assessment. Currently, pesticide risk assessment for pollinators is based on assays focused predominantly on worker bee mortality in response to pesticide exposure. This approach has been criticized for overlooking sublethal toxic effects and its lack of proper evaluation of the reproductively active honey bee drones and queens. Accordingly, the overarching goal of this thesis was to incorporate the evaluation of honey bee reproductive castes in toxicologic assays through the use of β€œgold standard” research techniques routinely used in vertebrate toxicology studies. First, we reviewed, documented, and summarized the normal anatomical structures of the mated queen reproductive tract in order to establish reference material of the normal morphology expected in healthy queen bees. Next, we investigated the effect of thiamethoxam (THI), a commonly used neonicotinoid, on developing queens. We found that direct THI toxicity in queens can result in hypoplasia of the pheromone producing mandibular glands. Such morphologic organ changes precede compromised organ function. Therefore, it is reasonable to hypothesize that dysregulation and disruption of pheromone production in intoxicated queens may partially explain the increased queen failure rates reported by beekeepers in association with high colony losses. Importantly, this study highlights that THI can have a direct negative effect on queen bees, indicating that it may be prudent to include all castes in pesticide risk assessment. This finding is further supported by our final studies, where we describe that THI toxicity is highly caste and age specific. Namely, we found that developing (i.e., larval) queens are highly sensitive to THI toxicity, but become more resilient following emergence. The opposite was found to be true for drones. Furthermore, detoxification enzyme activity in bees is similarly caste and age specific, although the enzymes tested in our studies did not change in response to THI treatment. Overall, these finding indicate that using worker bees alone in pesticide risk assessment may be suboptimal since toxicity in workers may not fully reflect toxicity observed in other honey bee castes. In addition, applying histologic and biochemical assays in pesticide risk assessment can potentially enhance our understanding of bee toxicity, improve the detection of sublethal toxic changes, and assist in the establishment of safe dose ranges of pesticides to protect pollinators while ensuring proper protection of agricultural crops

    Are honey bees a suitable model for fetal alcohol spectrum disorders?

    Get PDF
    Fetal alcohol spectrum disorders (FASDs) are a continuum of disorders caused by prenatal exposure to ethanol. They affect an estimated 4% of Canadians. FASDs are associated with a host of complications including, but not limited to, cognitive difficulties, developmental delay, increased mortality, smaller birth weight, smaller brain size, as well as gross and fine motor issues. It has been previously established that fruit flies (Drosophila melanogaster) are a suitable invertebrate model for FASDs. Honey bees (Apis mellifera) share many similarities to Drosophila as a research model, but with the distinct advantage of highly social behaviour, similar to that of humans. In this project we exposed honey bees to incremental, sublethal concentrations of ethanol during larval development and monitored their survival, developmental rate, and weight at adult emergence. We found that larval honey bees exposed to β‰₯6% ethanol experienced significantly higher mortality, developmental delay, and lower body weight at emergence. Accordingly, these results, in combination with ongoing neurobehavioural analyses of adult bees exposed to ethanol as larvae, suggest that honey bees may be an ideal model for human FASDs

    Does hive strength predispose honey bees to European foulbrood disease?

    Get PDF
    BC Blueberries, Project Apis m., Boehringer Ingelheim, Mitacs, Costco Wholesale, Saskatchewan Agriculture Development Fund, Agriculture Funding Consortium, Saskatchewan Beekeepers Development CommissionEuropean Foulbrood (EFB) is a bacterial disease of young honey bee larvae, caused by Melissococcus plutonius infection of the larval midgut. It occurs in times of nutritional stress when insufficient food is supplied to the larvae by the nursing bee population. EFB increases larval mortality, thereby limiting the colony’s growth, which can have consequences on the hive’s pollination services, honey production, and ability to reproduce. Recently, increased incidence of EFB has been observed across North America; however, the underlaying factors predisposing colonies to EFB remain largely unknown

    Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees

    No full text
    <div><p>Background</p><p>Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (<i>Apis mellifera</i> Linnaeus).</p><p>Objective</p><p>We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance.</p><p>Methods</p><p>From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models.</p><p>Results</p><p>There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect.</p><p>Conclusions</p><p>Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.</p></div

    ΠΠΠ£ΠšΠžΠ’Π† ΠŸΠ†Π”Π₯ΠžΠ”Π˜ ВА ΠŸΠ ΠΠšΠ’Π˜Π§ΠΠ† ΠΠ‘ΠŸΠ•ΠšΠ’Π˜ Π—ΠΠ‘Π’ΠžΠ‘Π£Π’ΠΠΠΠ― ΠœΠ•Π’ΠžΠ”Π£ Π”ΠžΠ‘Π›Π†Π”Π–Π•ΠΠΠ― Π’ΠŸΠ›Π˜Π’Π£ ΠŸΠ ΠžΠ‘Π†ΠžΠ’Π˜ΠšΠ†Π’ НА ΠžΠ Π“ΠΠΠ†Π—Πœ ΠœΠ•Π”ΠžΠΠžΠ‘ΠΠ˜Π₯ Π‘Π”Π–Π†Π› (Apis Mellifera) IN VITRO

    No full text
    Одним Ρ–Π· сучасних Ρ– пСрспСктивних напрямків Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ оздоровлСння пасіки, Π·ΠΎΠΊΡ€Π΅ΠΌΠ°, Π±Π΅Π·ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Ρ” застосування ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π². МайТС усі Ρ–ΡΠ½ΡƒΡŽΡ‡Ρ–&nbsp; ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½Ρ– ΡˆΡ‚Π°ΠΌΠΈ, ΠΌΠ°ΡŽΡ‚ΡŒ статус GRAS (Generally regarded as safe) Ρ– Π²ΠΈΠ·Π½Π°Π½Ρ– як Π±Π΅Π·ΠΏΠ΅Ρ‡Π½Ρ– для використання людиною. ΠŸΡ€ΠΎΡ‚Π΅ питання Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΠ°ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡƒ Ρ– ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π² Π²ΠΈΠΌΠ°Π³Π°Ρ” Π±Ρ–Π»ΡŒΡˆ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ вивчСння. ΠžΡΠΎΠ±Π»ΠΈΠ²ΠΎΡ— ΡƒΠ²Π°Π³ΠΈ заслуговує ΠΌΠ΅Ρ‚ΠΎΠ΄ дослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π² Π½Π° ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… особин мСдоносної Π±Π΄ΠΆΠΎΠ»ΠΈ in vitro, як модСль Π· ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎΡŽ Π²Π°Ρ€Ρ–Π°Ρ‚ΠΈΠ²Π½ΠΎΡŽ складовою (D.R. Schmehl, 2016). Один Ρ–Π· Π½Π°ΠΉΠ²Π°ΠΆΠ»ΠΈΠ²Ρ–ΡˆΠΈΡ… аспСктів Ρ†Ρ–Ρ”Ρ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ - Ρ†Π΅ створСння ΡƒΠΌΠΎΠ², Π·Π° яких Скспозиція дослідТуваного Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρƒ проявляє максимальний Ρ– бСзпосСрСдній Π²ΠΏΠ»ΠΈΠ² Π½Π° ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Π°ΠΆ Π΄ΠΎ появи Ρ–ΠΌΠ°Π³ΠΎ. ΠΠ½Π°Π»Ρ–Π·ΡƒΡŽΡ‡ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ «АпіпротСкт-плюс» Π½Π° ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ‚Π° лялСчок Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… особин Π±Π΄ΠΆΠΎΠ»ΠΈ мСдоносної Π±ΡƒΠ»ΠΎ виявлСно, Ρ‰ΠΎ концСнтрація ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ «АпіпротСкт-плюс» Ρƒ Π΄ΠΎΠ·Ρ– 1Γ—106 КУО Π² 1 ΠΌΠ» Π΄Ρ–Ρ”Ρ‚ΠΈ Π’ Ρ– Π‘ Π½Π΅ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π»Π° відхилСння Ρƒ рості Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ, Ρ…ΠΎΡ‡Π° спостСрігалися спорадичні Π²ΠΈΠΏΠ°Π΄ΠΊΠΈ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ Ρ—Ρ… Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ, Π² ΠΌΠ΅ΠΆΠ°Ρ… допустимого ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ Π΄ΠΎ 5%. Застосування ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ «АпіпротСкт-плюс» Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— 1Γ—109 КУО Π² 1&nbsp;ΠΌΠ» Π΄Ρ–Ρ”Ρ‚ΠΈ Π’ Ρ– Π‘ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½ΡŒ ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Ρƒ процСсів ΠΌΠ΅Ρ‚Π°ΠΌΠΎΡ€Ρ„ΠΎΠ·Ρƒ Π² Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… особин Π±Π΄ΠΆΠΎΠ»ΠΈ мСдоносної, які характСризувалися Π²ΠΈΡ€Π°ΠΆΠ΅Π½ΠΈΠΌ відставанням Ρƒ рості Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ (Π &lt;0,001), Ρ‰ΠΎ Π½Π° Π·Π°Π²Π΅Ρ€ΡˆΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ– ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ Ρ—Ρ… Π·Π°Π³ΠΈΠ±Π΅Π»Ρ–. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ ΠΏΠΎΠ΄Ρ–Π±Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΈΠΉ як бСзпосСрСднім Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ самих ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π½Π° Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ, Ρ‚Π°ΠΊ Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Ρ—Ρ… ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π½Π° склад ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Π΄Ρ–Ρ”Ρ‚ΠΈ. Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, ΠΌΠΎΠΆΠ½Π° припустити, Ρ‰ΠΎ застосування ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ вирощування Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… мСдоносних Π±Π΄ΠΆΡ–Π» in vitro дозволяє ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²Ρ– відомості ΠΏΡ€ΠΎ Π²ΠΏΠ»ΠΈΠ² Π½Π° Ρ—Ρ… ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΡ… Π³Ρ€ΡƒΠΏ ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Ρ‚Π° встановити Ρ—Ρ… допустимі ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ—, які ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані як in vitro, Ρ‚Π°ΠΊ in vivo.Одним Ρ–Π· сучасних Ρ– пСрспСктивних напрямків Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ оздоровлСння пасіки, Π·ΠΎΠΊΡ€Π΅ΠΌΠ°, Π±Π΅Π·ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, Ρ” застосування ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π². МайТС усі Ρ–ΡΠ½ΡƒΡŽΡ‡Ρ–&nbsp; ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½Ρ– ΡˆΡ‚Π°ΠΌΠΈ, ΠΌΠ°ΡŽΡ‚ΡŒ статус GRAS (Generally regarded as safe) Ρ– Π²ΠΈΠ·Π½Π°Π½Ρ– як Π±Π΅Π·ΠΏΠ΅Ρ‡Π½Ρ– для використання людиною. ΠŸΡ€ΠΎΡ‚Π΅ питання Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΠ°ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡƒ Ρ– ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π² Π²ΠΈΠΌΠ°Π³Π°Ρ” Π±Ρ–Π»ΡŒΡˆ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ вивчСння. ΠžΡΠΎΠ±Π»ΠΈΠ²ΠΎΡ— ΡƒΠ²Π°Π³ΠΈ заслуговує ΠΌΠ΅Ρ‚ΠΎΠ΄ дослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π² Π½Π° ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… особин мСдоносної Π±Π΄ΠΆΠΎΠ»ΠΈ in vitro, як модСль Π· ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎΡŽ Π²Π°Ρ€Ρ–Π°Ρ‚ΠΈΠ²Π½ΠΎΡŽ складовою (D.R. Schmehl, 2016). Один Ρ–Π· Π½Π°ΠΉΠ²Π°ΠΆΠ»ΠΈΠ²Ρ–ΡˆΠΈΡ… аспСктів Ρ†Ρ–Ρ”Ρ— ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ - Ρ†Π΅ створСння ΡƒΠΌΠΎΠ², Π·Π° яких Скспозиція дослідТуваного Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρƒ проявляє максимальний Ρ– бСзпосСрСдній Π²ΠΏΠ»ΠΈΠ² Π½Π° ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Π°ΠΆ Π΄ΠΎ появи Ρ–ΠΌΠ°Π³ΠΎ. ΠΠ½Π°Π»Ρ–Π·ΡƒΡŽΡ‡ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ «АпіпротСкт-плюс» Π½Π° ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ‚Π° лялСчок Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… особин Π±Π΄ΠΆΠΎΠ»ΠΈ мСдоносної Π±ΡƒΠ»ΠΎ виявлСно, Ρ‰ΠΎ концСнтрація ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ «АпіпротСкт-плюс» Ρƒ Π΄ΠΎΠ·Ρ– 1Γ—106 КУО Π² 1 ΠΌΠ» Π΄Ρ–Ρ”Ρ‚ΠΈ Π’ Ρ– Π‘ Π½Π΅ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π»Π° відхилСння Ρƒ рості Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ, Ρ…ΠΎΡ‡Π° спостСрігалися спорадичні Π²ΠΈΠΏΠ°Π΄ΠΊΠΈ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ Ρ—Ρ… Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ, Π² ΠΌΠ΅ΠΆΠ°Ρ… допустимого ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ Π΄ΠΎ 5%. Застосування ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ «АпіпротСкт-плюс» Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— 1Γ—109 КУО Π² 1&nbsp;ΠΌΠ» Π΄Ρ–Ρ”Ρ‚ΠΈ Π’ Ρ– Π‘ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½ΡŒ ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Ρƒ процСсів ΠΌΠ΅Ρ‚Π°ΠΌΠΎΡ€Ρ„ΠΎΠ·Ρƒ Π² Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… особин Π±Π΄ΠΆΠΎΠ»ΠΈ мСдоносної, які характСризувалися Π²ΠΈΡ€Π°ΠΆΠ΅Π½ΠΈΠΌ відставанням Ρƒ рості Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ (Π &lt;0,001), Ρ‰ΠΎ Π½Π° Π·Π°Π²Π΅Ρ€ΡˆΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ– ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎ Π΄ΠΎ Ρ—Ρ… Π·Π°Π³ΠΈΠ±Π΅Π»Ρ–. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ ΠΏΠΎΠ΄Ρ–Π±Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΈΠΉ як бСзпосСрСднім Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ самих ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π½Π° Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ, Ρ‚Π°ΠΊ Ρ– ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Ρ—Ρ… ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π½Π° склад ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Π΄Ρ–Ρ”Ρ‚ΠΈ. Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, ΠΌΠΎΠΆΠ½Π° припустити, Ρ‰ΠΎ застосування ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ вирощування Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… мСдоносних Π±Π΄ΠΆΡ–Π» in vitro дозволяє ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²Ρ– відомості ΠΏΡ€ΠΎ Π²ΠΏΠ»ΠΈΠ² Π½Π° Ρ—Ρ… ріст Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ ΠΏΡ€ΠΎΠ±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΡ… Π³Ρ€ΡƒΠΏ ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Ρ‚Π° встановити Ρ—Ρ… допустимі ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ—, які ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані як in vitro, Ρ‚Π°ΠΊ in vivo

    Weekly and cumulative feed consumption per colony over 12 weeks.

    No full text
    <p>Over twelve weeks, cumulative consumption of syrup (B) and pollen patty (D) was comparable for all experimental groups with the exception of colonies exposed to 20 nM thiamethoxam consuming 18.2% (2.98 kg) less syrup compared to controls. Shaded area indicates significant differences (P<0.01) in weekly pollen patty (C) consumption between control colonies and colonies exposed to 80 nM neonicotinoids. Treatment colonies were exposed to clothianidin (CLO), imidacloprid (IMD), or thiamethoxam (THI) at 20 or 80 nanomolar concentrations. Mean weekly (A, C) or cumulative (B, D) consumption per colony Β± SD is indicated for each group. * significantly different from control, P<0.01. The timing of the canola and alfalfa bloom surrounding the study site is indicated (A, C).</p

    Cumulative weight gain of colonies exposed to sublethal doses of individual neonicotinoids for twelve weeks.

    No full text
    <p>Treatment colonies were exposed to clothianidin (CLO) (A), imidacloprid (IMD) (B), or thiamethoxam (THI) (C) at 20 or 80 nanomolar concentrations. Colonies exposed to 80 nM CLO (A) and 80 nM IMD (B) demonstrated significant decreases in weight gain from controls at weeks 9 and 12 and week 9, respectively. The bars show mean cumulative colony weight gain Β± SD for each group (left y-axis). The curves show mean cumulative consumption of neonicotinoid per colony Β± SD in micromoles for the treatment groups (right y-axis). * significantly different from control, P<0.01. The timing of the canola and alfalfa bloom surrounding the study site is indicated (A).</p

    Capped brood area of colonies exposed to sublethal doses of neonicotinoid for twelve weeks.

    No full text
    <p>Treatment colonies were exposed for twelve weeks to clothianidin (CLO), imidacloprid (IMD), or thiamethoxam (THI) at 20 or 80 nanomolar concentrations. Brood area was quantified by analysis of digital images of brood frames with brood recognition software. There was no statistical difference among experimental groups but analyses lacked adequate (>80%) statistical power due to high variability. Mean Β± SD are indicated for each group.</p

    Chronic High-Dose Neonicotinoid Exposure Decreases Overwinter Survival of Apis mellifera L.

    No full text
    Overwinter colony mortality is an ongoing challenge for North American beekeepers. During winter, honey bee colonies rely on stored honey and beebread, which is frequently contaminated with the neonicotinoid insecticides clothianidin and thiamethoxam. To determine whether neonicotinoid exposure affects overwinter survival of Apis mellifera L., we chronically exposed overwintering field colonies and winter workers in the laboratory to thiamethoxam or clothianidin at different concentrations and monitored survival and feed consumption. We also investigated the sublethal effects of chronic thiamethoxam exposure on colony pathogen load, queen quality, and colony temperature regulation. Under field conditions, high doses of thiamethoxam significantly increased overwinter mortality compared to controls, with field-realistic doses of thiamethoxam showing no significant effect on colony overwinter survival. Under laboratory conditions, chronic neonicotinoid exposure significantly decreased survival of winter workers relative to negative control at all doses tested. Chronic high-dose thiamethoxam exposure was not shown to impact pathogen load or queen quality, and field-realistic concentrations of thiamethoxam did not affect colony temperature homeostasis. Taken together, these results demonstrate that chronic environmental neonicotinoid exposure significantly decreases survival of winter workers in the laboratory, but only chronic high-dose thiamethoxam significantly decreases overwinter survival of colonies in the field
    corecore