37 research outputs found

    Influence of socioeconomic factors on pregnancy outcome in women with structural heart disease

    Get PDF
    OBJECTIVE: Cardiac disease is the leading cause of indirect maternal mortality. The aim of this study was to analyse to what extent socioeconomic factors influence the outcome of pregnancy in women with heart disease.  METHODS: The Registry of Pregnancy and Cardiac disease is a global prospective registry. For this analysis, countries that enrolled ≥10 patients were included. A combined cardiac endpoint included maternal cardiac death, arrhythmia requiring treatment, heart failure, thromboembolic event, aortic dissection, endocarditis, acute coronary syndrome, hospitalisation for cardiac reason or intervention. Associations between patient characteristics, country characteristics (income inequality expressed as Gini coefficient, health expenditure, schooling, gross domestic product, birth rate and hospital beds) and cardiac endpoints were checked in a three-level model (patient-centre-country).  RESULTS: A total of 30 countries enrolled 2924 patients from 89 centres. At least one endpoint occurred in 645 women (22.1%). Maternal age, New York Heart Association classification and modified WHO risk classification were associated with the combined endpoint and explained 37% of variance in outcome. Gini coefficient and country-specific birth rate explained an additional 4%. There were large differences between the individual countries, but the need for multilevel modelling to account for these differences disappeared after adjustment for patient characteristics, Gini and country-specific birth rate.  CONCLUSION: While there are definite interregional differences in pregnancy outcome in women with cardiac disease, these differences seem to be mainly driven by individual patient characteristics. Adjustment for country characteristics refined the results to a limited extent, but maternal condition seems to be the main determinant of outcome

    Synthesis and application of mixed-spinel magnesioferrite: structural, vibrational, magnetic, and electrochemical sensing properties

    No full text
    This article presents an efficient non-enzymatic electrochemical sensor based on catalytic oxidation by the MgFe2O4 magnetic spinel for the sensitive determination of ascorbic acid. MgFe2O4 spinel ferrite is synthesized via the simple and cost-effective solid-state reaction route. X-ray photoelectron spectroscopy and X-ray diffraction studies reveal a mixed spinel structure of the synthesized material with the formula (Mg0.65Fe0.35)(A)[Fe1.65Mg0.35](B)O-4 with Fe3+ and Mg2+ occupying both the tetrahedral and octahedral sublattices. The Raman and Fourier-transform infrared spectroscopic analyses confirm the spinel structure formation. The DC magnetic measurements reveal a soft-magnetic behavior of the material due to the cationic distribution in the tetrahedral and octahedral sublattices. A maximum magnetization of 33.3 emu g(-1) at 70 kOe is obtained for the hysteresis loop measurement, which is performed at a temperature of 10 K. Furthermore, the magnesioferrite spinel integrated glassy carbon electrode displays an enhanced catalytic activity toward ascorbic acid compared to the bare electrode in the phosphate buffer solution of pH 7.4 owing to the mixed-valence cationic states in the spinel ferrite. The electrochemical performance of the modified electrode under the influence of various parameters such as scan rate, analyte concentration, and interference are studied in detail. The sensor provides a linear increase in the oxidation peak current as a function of increasing concentration with a limit of detection and quantification of 24.09 mu M and 80.30 mu M, respectively. The synthesized ferrite shows good selectivity toward interfering agents, such as potassium chloride, sulfuric acid, hydrogen peroxide, sodium hydroxide, glucose, and choline chloride.FALS

    Mastering extreme size constraints in the clathrate-I borosilicide Cs<sub>8</sub>B<sub>8</sub>Si<sub>38</sub>

    No full text
    Cs8B8Si38 is obtained by high-pressure high-temperature synthesis at p=8 GPa and T=1273 K. The new compound (space group Pm (Formula presented.) n; a=10.0312(3) Å) is the third example for a clathrate-I borosilicide after the potassium and rubidium varieties, respectively. The phase slowly deteriorates in air and moisture but is thermally stable up to 1050 K at ambient pressure. [Cs+]8[B–]8[Si0]38 is electronically balanced, diamagnetic, and shows semiconducting behavior. © 2021 The Authors. Zeitschrift für anorganische und allgemeine Chemie published by Wiley-VCH Gmb

    Doping Effects in CMOS-compatible CoSi Thin Films for Thermoelectric and Sensor Applications

    No full text
    Abstract. We report on semi-metallic cobalt monosilicide (CoSi) as a CMOS-compatible thermoelectric (TE) material and discuss the effect of n- and p-type dopants on its transport properties. Thin films of CoSi are developed using chemical vapor deposition tools and subsequent rapid thermal processing. Film properties such as microstructure, crystallinity and elemental distribution are studied via electron microscopy, X-ray diffraction and time-of-flight secondary ion mass spectroscopy. Doping silicon with boron prior to silicidation impedes the Co-Si diffusion process, while phosphorus atoms distribute uniformly in silicides with no voids or agglomerations. CoSi makes a suitable n-type TE candidate and provides an alternative to Si or SiGe materials. Transport properties of undoped CoSi exhibit a linear dependence within the investigated temperature window, whereas dopants in CoSi increase the number of electron carriers that contribute to charge transport and thereby influence the Seebeck coefficient. Thus, TE characteristics of thin CoSi films can be tuned via (i) the type of dopants used and/or (ii) varying the residual silicon thickness post silicidation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

    Geometrically frustrated magnetism of spins on icosahedral clusters: The Gd3Au13Sn4 quasicrystalline approximant

    No full text
    International audienceBy investigating the magnetism of spins on a quasiperiodic lattice, we present an experimental study of static and dynamic magnetic properties, specific heat, and magnetic entropy of the Gd3Au13Sn4 quasicrystalline approximant. The magnetic sublattice of Gd3Au13Sn4 is a periodic arrangement of nonoverlapping spin clusters of almost perfect icosahedral symmetry, where gadolinium localized f magnetic moments are distributed on equilateral triangles. The absence of disorder on the magnetic sublattice and the antiferromagnetic (AFM) interactions between the nearest-neighbor spins distributed on triangles result in geometrical frustration of spin-spin interactions. Thus, the Gd3Au13Sn4 phase can be viewed as a prototype site-ordered, geometrically frustrated spin system on icosahedral clusters. The zero-field-cooled and field-cooled magnetic susceptibilities, the alternating current susceptibility, the thermoremanent magnetization, the memory effect, the magnetic specific heat, and the magnetic entropy all show that the spin system undergoes at low temperatures a transition to a nonergodic state at the spin freezing temperature T-f approximate to 2.8 K. Below this, the ergodicity is broken on the experimental timescale, because the thermally activated correlation times for the spin reorientations become macroscopically long. The magnetic state achieved at low temperatures by continuous cooling in low magnetic fields is likely a superposition of (1) metastable states with randomly frozen spins that have no long-range order yet undergo gradual spin-freezing dynamics and (2) an AFM-like magnetically ordered state with critical slowing dynamics. The magnetic properties of the site-ordered, geometrically frustrated Gd3Au13Sn4 system are discussed in comparison to site-disordered spin glasses that contain both randomness and frustration

    Cardiac medication during pregnancy, data from the ROPAC

    No full text
    Background: Data on pharmacological management during pregnancy are scarce. The aim of this study was to describe the type and frequency of cardiac medication used in pregnancy in patients with cardiovascular disease and to assess the relationship between medication use and fetal outcome. Methods and results: Between 2007 and 2011 sixty hospitals in 28 countries enrolled 1321 pregnant women. All patients had structural heart disease (congenital 66%, valvular 25% or cardiomyopathy 7% or ischemic 2%). Medication was used by 424 patients (32%) at some time during pregnancy: 22% used beta-blockers, 8% antiplatelet agents, 7% diuretics, 2.8% ACE inhibitors and 0.5% statins. Compared to those who did not take medication, patients taking medication were older, more likely to be parous, have valvular heart disease and were less often in sinus rhythm. The odds ratio of fetal adverse events in users versus non-users of medication was 2.6 (95% CI 2.0-3.4) and after adjustment for cardiac and obstetric parameter was 2.0 (95% CI 1.4-2.7). Babies of patients treated with beta-blockers had a significantly lower adjusted birth weight (3140 versus 3240 g, p = 0.002). The highest rate of fetal malformation was found in patients taking ACE inhibitors (8%). Conclusion: One third of pregnant women with heart disease used cardiac medication during their pregnancy, which was associated with an increased rate of adverse fetal events. Birth weightwas significantly lower in children of patients taking beta-blockers. A randomized trial is needed to distinguish the effects of the medication from the effects of the underlying maternal cardiac condition. (C) 2014 Elsevier Ireland Ltd. All rights reserved

    Cardiac medication during pregnancy, data from the ROPAC

    No full text
    BACKGROUND Data on pharmacological management during pregnancy are scarce. The aim of this study was to describe the type and frequency of cardiac medication used in pregnancy in patients with cardiovascular disease and to assess the relationship between medication use and fetal outcome. METHODS AND RESULTS Between 2007 and 2011 sixty hospitals in 28 countries enrolled 1321 pregnant women. All patients had structural heart disease (congenital 66%, valvular 25% or cardiomyopathy 7% or ischemic 2%). Medication was used by 424 patients (32%) at some time during pregnancy: 22% used beta-blockers, 8% antiplatelet agents, 7% diuretics, 2.8% ACE inhibitors and 0.5% statins. Compared to those who did not take medication, patients taking medication were older, more likely to be parous, have valvular heart disease and were less often in sinus rhythm. The odds ratio of fetal adverse events in users versus non-users of medication was 2.6 (95% CI 2.0-3.4) and after adjustment for cardiac and obstetric parameter was 2.0 (95% CI 1.4-2.7). Babies of patients treated with beta-blockers had a significantly lower adjusted birth weight (3140 versus 3240 g, p = 0.002). The highest rate of fetal malformation was found in patients taking ACE inhibitors (8%). CONCLUSION One third of pregnant women with heart disease used cardiac medication during their pregnancy, which was associated with an increased rate of adverse fetal events. Birth weight was significantly lower in children of patients taking beta-blockers. A randomized trial is needed to distinguish the effects of the medication from the effects of the underlying maternal cardiac condition

    Insight into the physics of the 5f -band antiferromagnet U<sub>2</sub>Ni<sub>2</sub>Sn from the pressure dependence of crystal structure and electrical resistivity

    No full text
    A resistivity study of a single crystal of U2Ni2Sn has been performed at ambient pressure and under hydrostatic pressure up to p=3.3GPa. It revealed Fermi-liquid behavior accompanied by spin excitations with an energy gap Δ=30-55K in the whole pressure range. The Néel temperature varies with pressure in a nonmonotonous way. It increases at the rate dTN/dp=+0.6K/GPa, and later, after passing through the maximum at ≈3 GPa, it starts to decrease quickly. High-pressure x-ray diffraction indicated that an orthorhombic distortion of the tetragonal structure takes place around the pressure of this TN maximum. The computational study based on the density functional theory illustrates that the loss of magnetism in U2Ni2Sn with pressure is primarily due to 5f-band broadening, which results from the collapse of the U spacing within the U-U dimers. © 2021 American Physical Society
    corecore