129 research outputs found

    Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

    Get PDF
    We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.Comment: Submitted to IEEE Transactions on Signal Processin

    Single Bit and Reduced Dimension Diffusion Strategies Over Distributed Networks

    Get PDF
    We introduce novel diffusion based adaptive estimation strategies for distributed networks that have significantly less communication load and achieve comparable performance to the full information exchange configurations. After local estimates of the desired data is produced in each node, a single bit of information (or a reduced dimensional data vector) is generated using certain random projections of the local estimates. This newly generated data is diffused and then used in neighboring nodes to recover the original full information. We provide the complete state-space description and the mean stability analysis of our algorithms.Comment: Submitted to the IEEE Signal Processing Letter

    Data Imputation through the Identification of Local Anomalies

    Get PDF
    We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose i) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and ii) a Maximum A Posteriori (MAP) estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous vs normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions; and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions

    Compressive Diffusion Strategies Over Distributed Networks for Reduced Communication Load

    Get PDF
    We study the compressive diffusion strategies over distributed networks based on the diffusion implementation and adaptive extraction of the information from the compressed diffusion data. We demonstrate that one can achieve a comparable performance with the full information exchange configurations, even if the diffused information is compressed into a scalar or a single bit. To this end, we provide a complete performance analysis for the compressive diffusion strategies. We analyze the transient, steady-state and tracking performance of the configurations in which the diffused data is compressed into a scalar or a single-bit. We propose a new adaptive combination method improving the convergence performance of the compressive diffusion strategies further. In the new method, we introduce one more freedom-of-dimension in the combination matrix and adapt it by using the conventional mixture approach in order to enhance the convergence performance for any possible combination rule used for the full diffusion configuration. We demonstrate that our theoretical analysis closely follow the ensemble averaged results in our simulations. We provide numerical examples showing the improved convergence performance with the new adaptive combination method.Comment: Submitted to IEEE Transactions on Signal Processin

    Evaluation of serum homocysteine and nitric oxide concentrations compared with other biochemical parameters in sheep naturally infected with Fasciola hepatica

    Get PDF
    ΔΕΝ ΔΙΑΤΙΘΕΤΑΙ ΠΕΡΙΛΗΨΗThis study aims to determine the changes in serum homocysteine (Hcy) and nitric oxide (NO) concentrations in sheep naturally infected with F. hepatica. The animal material of the study consisted of a total of 50 sheep: 40 sheep with fascioliasis and 10 healthy sheep.The statistical analysis indicated that serum homocysteine concentrations, folate and vitamin B12 levels of the sheep infected with F. hepatica were higher than those of the control group (P<0.001 P<0.001 and P<0.05, respectively), whereas the nitric oxide levels of the sheep infected with F. hepatica were significantly lower than those of healthy sheep (P<0.001). In conclusion, it is thought that vitamin B12 and folate are not used sufficiently for the conversion of homocysteine to methionine in the remethylation cycle due to the damage in the liver tissue of sheep naturally infected with F. hepatica. This results in the increase of homocysteine which in turn inhibits the formation of nitric oxide
    corecore