5 research outputs found

    Estimating the abundance of the critically endangered Baltic Proper harbour porpoise (Phocoena phocoena) population using passive acoustic monitoring

    Get PDF
    The SAMBAH project was funded by the LIFE+ program of the European Commission (LIFE08 NAT/S/000261) and co-funded by Bundesamt für Naturschutz, Germany (SAMBAH II 5 Vw/52602/2011-Mar 36032/66); Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Germany (COSAMM FKZ 0325238); Carlsbergfondet, Denmark (CF16-0861); European Association of Zoos and Aquaria, The Netherlands; Główny Inpektorat Ochrony Środowiska, Poland; Havs-och Vattenmyndigheten, Sweden; Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy, Poland; Japanese Science and Technology Agency-CREST, Japan (7620-7); Kolmårdens Djurpark, Sweden; Maailman Luonnon Säätiö (WWF) Suomen Rahasto, Finland; Miljøministeriet, Denmark; Miljø- og Fødevareministeriet, Denmark (SN 343/SN-0008); Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej, Poland (561/2009/Wn-50/OP/RE-LF/D); Naturvårdsverket, Sweden; SNAK Ph.D. School, Aarhus University, Denmark (91147/365); Tampereen Särkänniemi Ltd., Finland; Turun ammattikorkeakoulu Oy, Finland; Uniwersytet Gdański, Poland; Wojewódzki Fundusz Ochrony Środowiska i Gospodarki Wodnej w Gdańsku, Poland; and Ympäristöministeriö, Finland.Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.Publisher PDFPeer reviewe

    Basin-scale distribution of harbour porpoises in the Baltic Sea provides basis for effective conservation actions

    No full text
    Knowledge on spatial and seasonal distribution of species is crucial when designing protected areas and implementing management actions. The Baltic Proper harbour porpoise (Phocoena phocoena) population is critically endangered, and its distribution is virtually unknown. Here, we used passive acoustic monitoring and species distribution models to describe the spatial and seasonal distribution of harbour porpoises in the Baltic Proper. Porpoise click detectors were deployed over a systematic grid of 297 stations in eight countries from April 2011 through July 2013. Generalized additive models were used to describe the monthly probability of detecting porpoise clicks as a function of spatially-referenced covariates and time. During the reproductive season, two main areas of high probability of porpoise detection were identified. One of those areas, situated on and around the offshore banks in the Baltic Proper, is clearly separated from the known distribution range of the Belt Sea population during breeding season, suggesting this is an important breeding ground for the Baltic Proper population. We commend the designation of this area as a marine protected area and recommend Baltic Sea countries to also protect areas in the southern Baltic Sea and the Hanö Bight where additional important harbour porpoise habitats were identified. Further conservation measures should be carried out based on analyses of overlap between harbour porpoise distribution and potentially harmful anthropogenic activities. Our study shows that large-scale systematic monitoring using novel techniques can give important insights on the distribution of low-density populations, and that international cooperation is pivotal when studying transnationally migratory species

    Estimating the abundance of the critically endangered Baltic Proper harbour porpoise (Phocoena phocoena) population using passive acoustic monitoring

    No full text
    Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers’ spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1,105 individuals (95% CI, point estimate 491) during May-October within the population’s proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighbouring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.,Four main datasets are provided, together with meta-data and processing code files. 1. SAMBAH main survey: passive acoustic monitoring data collected by CPOD click loggers in the Baltic Sea May 2011-April 2013. 2. Great Belt tracking experiment: detection/nondetection of acoustically tracked harbour porpoises May-June 2013 in Great Belt, Denmark. 3. Playback experiment: detection/nondetection of artificial clicks produced to estimate click detectability during the SAMBAH main survey and Great Belt tracking experiment. 4. Tagging study: click production and depth data from 6 tagged porpoises in Danish waters between May 2010 and April 2011.,See readme.txt file.

    Estimating the abundance of the critically endangered Baltic Proper harbour porpoise (Phocoena phocoena) population using passive acoustic monitoring (sotware)

    No full text
    Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1,105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighbouring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales
    corecore