90 research outputs found

    Biorefinery of Chlorella sp. using integrated multiphasic systems for biofuel, feed and wound healing application

    Get PDF
    Microalgae have been explored as a sustainable alternative to fuel and feed on natural resources. Microalgae possess numerous advantages over their renewable counterparts such as soybean and palm oil. It does not compete with agricultural land or freshwater for food crop production, making it a potential biofuel source. However, commercialisation of microalgae biodiesel is yet to make a presence in the billion-dollar biofuel industry due to the bottlenecks. These include rigid microalgae cell wall, low biomass concentration in the harvested culture and high downstream costs. Therefore, a fossil fuel-derived concept of refinery can be introduced to microalgae to overcome as aforementioned challenges. This project aims to focus on the algae downstream process for biorefinery applications. First, a novel biocomponent extraction method, named sugaring-out assisted liquid biphasic electric flotation (LBEF) system, for protein separation from Chlorella vulgaris was developed. High yield of proteins (69.66±0.86 %) was extracted from microalgae with a rapid and single-step process. Following this, a multiphase integrated system that focused on the extraction of two or more biomolecules in microalgae was introduced. This system focused on simultaneous component extraction rather than conventional cascade approach. The system were incorporated in two different studies. First study aimed to extract two biomolecules (protein and lipid), whereas second study focused on a concurrent three biomolecules extraction approach. The parameters of this system such as volume ratio of ammonium sulphate and t-butanol, flotation air flowrate, flotation time, ultrasound pulse settings and pH were optimised to achieve a high recovery of biomolecules. Highest yield of protein, lipids and carbohydrates were observed at 96.59±8.15 %, 61.02±0.91 % and 52.69±1.90 %, respectively. Control run without flotation technique resulted in lower yield of proteins, lipids and carbohydrates at 25.33±3.50 %, 52.96±4.59 % and 32.44±0.29 %, respectively. Whereas, control run without flotation and cell-disruption technique had lowest yield of proteins, lipids and carbohydrates at 16.73±1.26 %, 51.13±6.27 % and 26.21±0.23 %, respectively. Besides, a large-scale set-up up to 10-15 times was tested out. Recycling ability of the chemicals involved in the extraction were presented. Up to 90 % of the alcohols and salt used in the experiment were recycled. Lastly, the extracted proteins from the multiphase integrated system were purified and its application in wound healing of human keratinocyte cells was investigated. Proteins were adsorbed on a gelatine-glutaraldehyde membrane. This membrane system was used to observe the wound healing of keratinocytes. The biocompatibility, cell adhesion, proliferation and wound scratch of human keratinocyte cells were studied and presented. Overall, multiphase integrated system presented in this project serves as a successful demonstration of microalgae biorefinery concept. The improved yield of biomolecules provide potential applications of microalgae in biofuel, food and medicine field industry. Future studies should focus on analysis of life-cycle cost and optimising the operational cost required for this whole biorefinery set up. The project presented in this thesis offers a platform for future biorefinery research and possible commercial large-scale utilisation

    Biorefinery of Chlorella sp. using integrated multiphasic systems for biofuel, feed and wound healing application

    Get PDF
    Microalgae have been explored as a sustainable alternative to fuel and feed on natural resources. Microalgae possess numerous advantages over their renewable counterparts such as soybean and palm oil. It does not compete with agricultural land or freshwater for food crop production, making it a potential biofuel source. However, commercialisation of microalgae biodiesel is yet to make a presence in the billion-dollar biofuel industry due to the bottlenecks. These include rigid microalgae cell wall, low biomass concentration in the harvested culture and high downstream costs. Therefore, a fossil fuel-derived concept of refinery can be introduced to microalgae to overcome as aforementioned challenges. This project aims to focus on the algae downstream process for biorefinery applications. First, a novel biocomponent extraction method, named sugaring-out assisted liquid biphasic electric flotation (LBEF) system, for protein separation from Chlorella vulgaris was developed. High yield of proteins (69.66±0.86 %) was extracted from microalgae with a rapid and single-step process. Following this, a multiphase integrated system that focused on the extraction of two or more biomolecules in microalgae was introduced. This system focused on simultaneous component extraction rather than conventional cascade approach. The system were incorporated in two different studies. First study aimed to extract two biomolecules (protein and lipid), whereas second study focused on a concurrent three biomolecules extraction approach. The parameters of this system such as volume ratio of ammonium sulphate and t-butanol, flotation air flowrate, flotation time, ultrasound pulse settings and pH were optimised to achieve a high recovery of biomolecules. Highest yield of protein, lipids and carbohydrates were observed at 96.59±8.15 %, 61.02±0.91 % and 52.69±1.90 %, respectively. Control run without flotation technique resulted in lower yield of proteins, lipids and carbohydrates at 25.33±3.50 %, 52.96±4.59 % and 32.44±0.29 %, respectively. Whereas, control run without flotation and cell-disruption technique had lowest yield of proteins, lipids and carbohydrates at 16.73±1.26 %, 51.13±6.27 % and 26.21±0.23 %, respectively. Besides, a large-scale set-up up to 10-15 times was tested out. Recycling ability of the chemicals involved in the extraction were presented. Up to 90 % of the alcohols and salt used in the experiment were recycled. Lastly, the extracted proteins from the multiphase integrated system were purified and its application in wound healing of human keratinocyte cells was investigated. Proteins were adsorbed on a gelatine-glutaraldehyde membrane. This membrane system was used to observe the wound healing of keratinocytes. The biocompatibility, cell adhesion, proliferation and wound scratch of human keratinocyte cells were studied and presented. Overall, multiphase integrated system presented in this project serves as a successful demonstration of microalgae biorefinery concept. The improved yield of biomolecules provide potential applications of microalgae in biofuel, food and medicine field industry. Future studies should focus on analysis of life-cycle cost and optimising the operational cost required for this whole biorefinery set up. The project presented in this thesis offers a platform for future biorefinery research and possible commercial large-scale utilisation

    HIV and cancer registry linkage identifies a substantial burden of cancers in persons with HIV in India.

    Get PDF
    We utilized computerized record-linkage methods to link HIV and cancer databases with limited unique identifiers in Pune, India, to determine feasibility of linkage and obtain preliminary estimates of cancer risk in persons living with HIV (PLHIV) as compared with the general population.Records of 32,575 PLHIV were linked to 31,754 Pune Cancer Registry records (1996-2008) using a probabilistic-matching algorithm. Cancer risk was estimated by calculating standardized incidence ratios (SIRs) in the early (4-27 months after HIV registration), late (28-60 months), and overall (4-60 months) incidence periods. Cancers diagnosed prior to or within 3 months of HIV registration were considered prevalent.Of 613 linked cancers to PLHIV, 188 were prevalent, 106 early incident, and 319 late incident. Incident cancers comprised 11.5% AIDS-defining cancers (ADCs), including cervical cancer and non-Hodgkin lymphoma (NHL), but not Kaposi sarcoma (KS), and 88.5% non-AIDS-defining cancers (NADCs). Risk for any incident cancer diagnosis in early, late, and combined periods was significantly elevated among PLHIV (SIRs: 5.6 [95% CI 4.6-6.8], 17.7 [95% CI 15.8-19.8], and 11.5 [95% CI 10-12.6], respectively). Cervical cancer risk was elevated in both incidence periods (SIRs: 9.6 [95% CI 4.8-17.2] and 22.6 [95% CI 14.3-33.9], respectively), while NHL risk was elevated only in the late incidence period (SIR: 18.0 [95% CI 9.8-30.20]). Risks for NADCs were dramatically elevated (SIR > 100) for eye-orbit, substantially (SIR > 20) for all-mouth, esophagus, breast, unspecified-leukemia, colon-rectum-anus, and other/unspecified cancers; moderately elevated (SIR > 10) for salivary gland, penis, nasopharynx, and brain-nervous system, and mildly elevated (SIR > 5) for stomach. Risks for 6 NADCs (small intestine, testis, lymphocytic leukemia, prostate, ovary, and melanoma) were not elevated and 5 cancers, including multiple myeloma not seen.Our study demonstrates the feasibility of using probabilistic record-linkage to study cancer/other comorbidities among PLHIV in India and provides preliminary population-based estimates of cancer risks in PLHIV in India. Our results, suggesting a potentially substantial burden and slightly different spectrum of cancers among PLHIV in India, support efforts to conduct multicenter linkage studies to obtain precise estimates and to monitor cancer risk in PLHIV in India

    Advances in Nanotechnology for Cancer Immunoprevention and Immunotherapy: A Review

    Get PDF
    One of the most effective cancer therapies, cancer immunotherapy has produced outstanding outcomes in the field of cancer treatment. However, the cost is excessive, which limits its applicability. A smart way to address this issue would be to apply the knowledge gained through immunotherapy to develop strategies for the immunoprevention of cancer. The use of cancer vaccines is one of the most popular methods of immunoprevention. This paper reviews the technologies and processes that support the advantages of cancer immunoprevention over traditional cancer immunotherapies. Nanoparticle drug delivery systems and nanoparticle-based nano-vaccines have been employed in the past for cancer immunotherapy. This paper outlines numerous immunoprevention strategies and how nanotechnology can be applied in immunoprevention. To comprehend the non-clinical and clinical evaluation of these cancer vaccines through clinical studies is essential for acceptance of the vaccines. © 2022 by the authors

    Bio-processing of algal bio-refinery: a review on current advances and future perspectives

    Get PDF
    Microalgae biomass contains various useful bio-active components. Microalgae derived biodiesel has been researched for almost two decades. However, sole biodiesel extraction from microalgae is time-consuming and is not economically feasible due to competitive fossil fuel prices. Microalgae also contains proteins and carbohydrates in abundance. Microalgae are likewise utilized to extract high-value products such as pigments, anti-oxidants and long-chain polyunsaturated fatty acids which are useful in cosmetic, pharmaceutical and nutraceutical industry. These compounds can be extracted simultaneously or sequentially after biodiesel extraction to reduce the total expenditure involved in the process. This approach of bio-refinery is necessary to promote microalgae in the commercial market. Researchers have been keen on utilizing the bio-refinery approach to exploit the valuable components encased by microalgae. Apart from all the beneficial components housed by microalgae, they also help in reducing the anthropogenic CO2 levels of the atmosphere while utilizing saline or wastewater. These benefits enable microalgae as a potential source for bio-refinery approach. Although life-cycle analysis and economic assessment do not favor the use of microalgae biomass feedstock to produce biofuel and co-products with the existing techniques, this review still aims to highlight the beneficial components of microalgae and their importance to humans. In addition, this article also focuses on current and future aspects of improving the feasibility of bio-processing for microalgae bio-refinery

    Trends in mouth cancer incidence in Mumbai, India (1995–2009): An age-period-cohort analysis

    Get PDF
    AbstractIntroductionDespite tobacco control and health promotion efforts, the incidence rates of mouth cancer are increasing across most regions in India. Analysing the influence of age, time period and birth cohort on these secular trends can point towards underlying factors and help identify high-risk populations for improved cancer control programmes.MethodsWe evaluated secular changes in mouth cancer incidence among men and women aged 25–74 years in Mumbai between 1995 and 2009 by calculating age-specific and age-standardized incidence rates (ASR). We estimated the age-adjusted linear trend for annual percent change (EAPC) using the drift parameter, and conducted an age–period–cohort (APC) analysis to quantify recent time trends and to evaluate the significance of birth cohort and calendar period effects.ResultsOver the 15-year period, age-standardized incidence rates of mouth cancer in men in Mumbai increased by 2.7% annually (95% CI:1.9 to 3.4), p<0.0001) while rates among women decreased (EAPC=−0.01% (95% CI:−0.02 to −0.002), p=0.03). APC analysis revealed significant non-linear positive period and cohort effects in men, with higher effects among younger men (25–49 years). Non-significant increasing trends were observed in younger women (25–49 years).ConclusionsAPC analyses from the Mumbai cancer registry indicate a significant linear increase of mouth cancer incidence from 1995 to 2009 in men, which was driven by younger men aged 25–49 years, and a non-significant upward trend in similarly aged younger women. Health promotion efforts should more effectively target younger cohorts

    Antiviral perspectives of economically important Indian medicinal plants and spices

    Get PDF
    Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections. © 2022, Indian National Science Academy
    corecore