8,713 research outputs found

    Coherent states of a charged particle in a uniform magnetic field

    Full text link
    The coherent states are constructed for a charged particle in a uniform magnetic field based on coherent states for the circular motion which have recently been introduced by the authors.Comment: 2 eps figure

    On the uncertainty relations and squeezed states for the quantum mechanics on a circle

    Get PDF
    The uncertainty relations for the position and momentum of a quantum particle on a circle are identified minimized by the corresponding coherent states. The sqeezed states in the case of the circular motion are introduced and discussed in the context of the uncertainty relations.Comment: 4 figure

    Toward a numerical deshaker for PFS

    Get PDF
    The Planetary Fourier Spectrometer (PFS) onboard Mars Express (MEx) is the instrument with the highest spectral resolution observing Mars from orbit since January 2004. It permits studying the atmospheric structure, major and minor compounds. The present time version of the calibration is limited by the effects of mechanical vibration, currently not corrected. We proposed here a new approach to correct for the vibrations based on semi-blind deconvolution of the measurements. This new approach shows that a correction can be done efficiently with 85% reduction of the artefacts, in a equivalent manner to the stacking of 10 spectra. Our strategy is not fully automatic due to the dependence on some regularisation parameters. It may be applied on the complete PFS dataset, correcting the large-scale perturbation due to microvibrations for each spectrum independently. This approach is validated on actual PFS data of Short Wavelength Channel (SWC), perturbed by microvibrations. A coherence check can be performed and also validate our approach. Unfortunately, the coherence check can be done only on the first 310 orbits of MEx only, until the laser line has been switch off. More generally, this work may apply to numerically "deshake" Fourier Transform Spectrometer (FTS), widely used in space experiments or in the laboratory.Comment: 18 pages, 8 figures, submitted to Planetary and Space Scienc

    Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds

    Full text link
    Let s be at least 2. We construct Ricci flat pseudo-Riemannian manifolds of signature (2s,s) which are not locally homogeneous but whose curvature tensors never the less exhibit a number of important symmetry properties. They are curvature homogeneous; their curvature tensor is modeled on that of a local symmetric space. They are spacelike Jordan Osserman with a Jacobi operator which is nilpotent of order 3; they are not timelike Jordan Osserman. They are k-spacelike higher order Jordan Osserman for 2≀k≀s2\le k\le s; they are k-timelike higher order Jordan Osserman for s+2≀k≀2ss+2\le k\le 2s, and they are not k timelike higher order Jordan Osserman for 2≀s≀s+12\le s\le s+1.Comment: Update bibliography, fix minor misprint

    Physics of Quantum Relativity through a Linear Realization

    Full text link
    The idea of quantum relativity as a generalized, or rather deformed, version of Einstein (special) relativity has been taking shape in recent years. Following the perspective of deformations, while staying within the framework of Lie algebra, we implement explicitly a simple linear realization of the relativity symmetry, and explore systematically the resulting physical interpretations. Some suggestions we make may sound radical, but are arguably natural within the context of our formulation. Our work may provide a new perspective on the subject matter, complementary to the previous approach(es), and may lead to a better understanding of the physics.Comment: 27 pages in Revtex, no figure; proof-edited version to appear in Phys.Rev.

    Relativistic ideal Fermi gas at zero temperature and preferred frame

    Full text link
    We discuss the limit T->0 of the relativistic ideal Fermi gas of luxons (particles moving with the speed of light) and tachyons (hypothetical particles faster than light) based on observations of our recent paper: K. Kowalski, J. Rembielinski and K.A. Smolinski, Phys. Rev. D, 76, 045018 (2007). For bradyons this limit is in fact the nonrelativistic one and therefore it is not studied herein

    MnAs dots grown on GaN(0001)-(1x1) surface

    Full text link
    MnAs has been grown by means of MBE on the GaN(0001)-(1x1) surface. Two options of initiating the crystal growth were applied: (a) a regular MBE procedure (manganese and arsenic were delivered simultaneously) and (b) subsequent deposition of manganese and arsenic layers. It was shown that spontaneous formation of MnAs dots with the surface density of 1⋅1011\cdot 10^{11} cm−2^{-2} and 2.5⋅10112.5\cdot 10^{11} cm−2^{-2}, respectively (as observed by AFM), occurred for the layer thickness higher than 5 ML. Electronic structure of the MnAs/GaN systems was studied by resonant photoemission spectroscopy. That led to determination of the Mn 3d - related contribution to the total density of states (DOS) distribution of MnAs. It has been proven that the electronic structures of the MnAs dots grown by the two procedures differ markedly. One corresponds to metallic, ferromagnetic NiAs-type MnAs, the other is similar to that reported for half-metallic zinc-blende MnAs. Both system behave superparamagnetically (as revealed by magnetization measurements), but with both the blocking temperatures and the intra-dot Curie temperatures substantially different. The intra-dot Curie temperature is about 260 K for the former system while markedly higher than room temperature for the latter one. Relations between growth process, electronic structure and other properties of the studied systems are discussed. Possible mechanisms of half-metallic MnAs formation on GaN are considered.Comment: 20+ pages, 8 figure
    • 

    corecore