572 research outputs found

    Comment on "Self-Referenced Coherent Diffraction X-Ray Movie of \AA ngstrom- and Femtosecond-Scale Atomic Motion"

    Full text link
    This submission is a comment on an article that had previously appeared in Phys. Rev. Lett.Comment: Phys. Rev. Lett. (in press

    Monitoring Nonadiabatic Avoided Crossing Dynamics in Molecules by Ultrafast X-Ray Diffraction

    Full text link
    We examine time-resolved X-ray diffraction from molecules in the gas phase which undergo nonadiabatic avoided-crossing dynamics involving strongly coupled electrons and nuclei. Several contributions to the signal are identified, representing (in decreasing strength) elastic scattering, contributions of the electronic coherences created by nonadiabatic couplings in the avoided crossing regime, and inelastic scattering. The former probes the charge density and delivers direct information on the evolving molecular geometry. The latter two contributions are weaker and carry spatial information of the transition charge densities (off-diagonal elements of the charge-density operator). Simulations are presented for the nonadiabatic harpooning process in the excited states of sodium fluoride

    An adaptive interpolation scheme for molecular potential energy surfaces

    Full text link
    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task -- especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior is evaluated for a model function in 2, 3 and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version

    Quantum Control with Quantum Light of Molecular Nonadiabaticity

    Get PDF
    Coherent control experiments in molecules are often done with shaped laser fields. The electric field is described classically and control over the time evolution of the system is achieved by shaping the laser pulses in the time or frequency domain. Moving on from a classical to a quantum description of the light field allows to engineer the quantum state of light to steer chemical processes. The quantum field description of the photon mode allows to manipulate the light-matter interaction directly in phase-space. In this paper we will demonstrate the basic principle of coherent control with quantum light on the avoided crossing in lithium fluoride. Using a quantum description of light together with the nonadiabatic couplings and vibronic degrees of freedoms opens up new perspective on quantum control. We show the deviations from control with purely classical light field and how back-action of the light field becomes important in a few photon regime

    X-Ray sum frequency generation; direct imaging of ultrafast electron dynamics

    Get PDF
    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved X-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear X-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband X-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor/acceptor substituted stilbene

    Cavity sideband cooling of trapped molecules

    Get PDF
    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case where the IR transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radio-frequency or optical trapping potential, depending on whether they are charged or neutral, and confined inside a high-finesse optical resonator which enhances radiative emission into the cavity mode. Using realistic experimental parameters and COS as a representative molecular example, we show that in this setup cooling to the trap ground state is feasible

    Catching Conical Intersections in the Act; Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    Full text link
    Conical intersections (CoIn) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort, CoIns have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. We show that short X-ray (rather than optical) pulses can directly detect the passage through a CoIn with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse to detect the electronic coherences (rather than populations) that are generated as the system passes through the CoIn

    Wave Packet Simulations of Antiproton Scattering on Molecular Hydrogen

    Full text link
    The problem of antiproton scattering on the molecular Hydrogen is investigated by means of wave packet dynamics. The electronically potential energy surfaces of the antiproton H2 system are presented within this work. Excitation and dissociation probabilities of the molecular Hydrogen for collision energies in the ultra low energy regime below 10 eV are computed

    Ultrafast dynamics in the vicinity of quantum light-induced conical intersections

    Get PDF
    Nonadiabatic effects appear due to avoided crossings or conical intersections that are either intrinsic properties in field-free space or induced by a classical laser field in a molecule. It was demonstrated that avoided crossings in diatomics can also be created in an optical cavity. Here, the quantized radiation field mixes the nuclear and electronic degrees of freedom creating hybrid field-matter states called polaritons. In the present theoretical study we go further and create conical intersections in diatomics by means of a radiation field in the framework of cavity quantum electrodynamics (QED). By treating all degrees of freedom, that is the rotational, vibrational, electronic and photonic degrees of freedom on an equal footing we can control the nonadiabatic quantum light-induced dynamics by means of conical intersections. First, the pronounced difference between the the quantum light-induced avoided crossing and the conical intersection with respect to the nonadiabatic dynamics of the molecule is demonstrated. Second, we discuss the similarities and differences between the classical and the quantum field description of the light for the studied scenario

    Monitoring Nonadiabatic Electron-Nuclear Dynamics in Molecules by Attosecond Streaking of Photoelectrons

    Full text link
    Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry an additional phase information, which can be retrieved by the streaking technique. In this contribution we extend the streaking formalism to include coupled electron and nuclear dynamics in molecules as well as initial coherences and demonstrate how it offers a novel tool to monitor non-adiabatic dynamics as it occurs in the vicinity of conical intersections and avoided crossings. Streaking can enhance the time resolution and provide direct signatures of electronic coherences, which affect many primary photochemical and biological events
    corecore