67 research outputs found

    Causes of death and demographic characteristics of victims of meteorological disasters in Korea from 1990 to 2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meteorological disasters are an important component when considering climate change issues that impact morbidity and mortality rates. However, there are few epidemiological studies assessing the causes and characteristics of deaths from meteorological disasters. The present study aimed to analyze the causes of death associated with meteorological disasters in Korea, as well as demographic and geographic vulnerabilities and their changing trends, to establish effective measures for the adaptation to meteorological disasters.</p> <p>Methods</p> <p>Deaths associated with meteorological disasters were examined from 2,045 cases in Victim Survey Reports prepared by 16 local governments from 1990 to 2008. Specific causes of death were categorized as drowning, structural collapse, electrocution, lightning, fall, collision, landslide, avalanche, deterioration of disease by disaster, and others. Death rates were analyzed according to the meteorological type, specific causes of death, and demographic and geographic characteristics.</p> <p>Results</p> <p>Drowning (60.3%) caused the greatest number of deaths in total, followed by landslide (19.7%) and structural collapse (10.1%). However, the causes of deaths differed between disaster types. The meteorological disaster associated with the greatest number of deaths has changed from flood to typhoon. Factors that raised vulnerability included living in coastal provinces (11.3 times higher than inland metropolitan), male gender (1.9 times higher than female), and older age.</p> <p>Conclusions</p> <p>Epidemiological analyses of the causes of death and vulnerability associated with meteorological disasters can provide the necessary information for establishing future adaptation measures against climate change. A more comprehensive system for assessing disaster epidemiology needs to be established.</p

    Non-heat related impacts of climate change on working populations

    Get PDF
    Environmental and social changes associated with climate change are likely to have impacts on the well-being, health, and productivity of many working populations across the globe. The ramifications of climate change for working populations are not restricted to increases in heat exposure. Other significant risks to worker health (including physical hazards from extreme weather events, infectious diseases, under-nutrition, and mental stresses) may be amplified by future climate change, and these may have substantial impacts at all scales of economic activity. Some of these risks are difficult to quantify, but pose a substantial threat to the viability and sustainability of some working populations. These impacts may occur in both developed and developing countries, although the latter category is likely to bear the heaviest burden

    Visual Analytics for Epidemiologists: Understanding the Interactions Between Age, Time, and Disease with Multi-Panel Graphs

    Get PDF
    Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of an outcome by time and age simultaneously.We introduce and demonstrate multi-panel (MP) graphs applied in four different settings: U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population (≥65 years old), 1991-2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the general population, 2004-2005; and asthma-associated hospital visits for children aged 0-18 at Milwaukee Children's Hospital of Wisconsin, 1997-2006. We illustrate trends and anomalies that otherwise would be obscured by traditional visualization techniques such as case pyramids and time-series plots.MP graphs can weave together two vital dynamics--temporality and demographics--that play important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and disease biosurveillance efforts

    Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4.

    Get PDF
    The mucosa of the female reproductive tract plays a pivotal role in host defence. Pregnancy must alter immunological mechanisms at this interface to protect the conceptus. We sought to determine how estradiol (E2) alters the immune-responsiveness of cervical epithelial cells to ligand stimulation of Toll-like receptor (TLR)-2 and -4. Human ectocervical epithelial cells (HECECs) were cultured and co-incubated with two concentrations of E2 and peptidoglycan (PGN) or lipopolysaccharide (LPS) over durations that ranged between 10 minutes and 18 hours. Cytometric Bead Array was performed to quantify eight cytokines in the supernatant fluid. In response to PGN, HECECs co-incubated with E2 released lesser quantities of IL-1ß and IFNγ, higher levels of RANTES, and variable levels of IL-6 and IL-8 than those not exposed to E2. In contrast, HECECs co-incubated with LPS and E2 secreted increased levels of IL-1ß, IL-6, IL-8, and IFNγ at 2 and 18 hours than HECECs not exposed to E2, and reduced levels of RANTES at same study time-points. Estradiol alters the immune-responsiveness of cultured HECECs to TLR2 and TLR4 ligands in a complex fashion that appears to vary with bacterial ligand, TLR subtype, and duration of exposure. Our observations are consistent with the functional complexity that this mucosal interface requires for its immunological roles

    Seasonality in Human Zoonotic Enteric Diseases: A Systematic Review

    Get PDF
    BACKGROUND: Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC), cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i) environmental effects on pathogen occurrence and pathogen-host associations and (ii) population characteristics/behaviour. METHODOLOGY/PRINCIPAL FINDINGS: We systematically reviewed published literature from 1960-2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22) and a higher index for VTEC (Gini  0.36). Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39). Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18). CONCLUSIONS/SIGNIFICANCE: Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate, developed countries

    Isolation and Characterization of Human Trophoblast Side-Population (SP) Cells in Primary Villous Cytotrophoblasts and HTR-8/SVneo Cell Line

    Get PDF
    Recently, numerous studies have identified that immature cell populations including stem cells and progenitor cells can be found among “side-population” (SP) cells. Although SP cells isolated from some adult tissues have been reported elsewhere, isolation and characterization of human trophoblast SP remained to be reported. In this study, HTR-8/SVneo cells and human primary villous cytotrophoblasts (vCTBs) were stained with Hoechst 33342 and SP and non-SP (NSP) fractions were isolated using a cell sorter. A small population of SP cells was identified in HTR-8/SVneo cells and in vCTBs. SP cells expressed several vCTB-specific markers and failed to express syncytiotrophoblast (STB) or extravillous cytotrophopblast (EVT)-specific differentiation markers. SP cells formed colonies and proliferated on mouse embryonic fibroblast (MEF) feeder cells or in MEF conditioned medium supplemented with heparin/FGF2, and they also showed long-term repopulating property. SP cells could differentiate into both STB and EVT cell lineages and expressed several differentiation markers. Microarray analysis revealed that IL7R and IL1R2 were exclusively expressed in SP cells and not in NSP cells. vCTB cells sorted as positive for both IL7R and IL1R2 failed to express trophoblast differentiation markers and spontaneously differentiated into both STB and EVT in basal medium. These features shown by the SP cells suggested that IL7R and IL1R2 are available as markers to detect the SP cells and that vCTB progenitor cells and trophoblast stem cells were involved in the SP cell population

    Public perceptions of shale gas in the UK : framing effects and decision heuristics

    Get PDF
    Using two equivalent descriptions of the shale gas development process, we asked individuals to indicate their levels of support as well as their perceptions of the risks and costs involved. In version 1, shale gas development was framed as ‘fracking’, whereas under version 2 it was framed as ‘using hydraulic pressure to extract natural gas from the ground’. We find that individuals’ support for shale gas development is much lower when using the term ‘fracking’ as opposed to the synonymous descriptive term, and moreover, these differences were substantive. Our analysis suggests that these differences appear to be largely the result of different assessments of the risks associated with ‘fracking’ as opposed to ‘using hydraulic pressure to extract natural gas from the ground’. Our proposed explanation for these differences rests on the idea that shale gas development is a technical and complex process and many individuals will be bounded by the rationality of scientific knowledge when it comes to understanding this process. In turn, individuals may be relying on simple decision heuristics shaped by the way this issue is framed by the media and other interested parties which may constrain meaningful discourse on this topic with the public. Our findings also highlight some of the potential pitfalls when it comes to relying on survey research for assessing the public’s views towards complex environmental issues
    corecore