51 research outputs found

    Extension of effort for lunar flight handbook detailed technical report

    Get PDF
    Lunar flight handbook - orbital departure windows, libration points, and lunar flight orbit estimation, theory, and operation

    Ultralow noise performance of an 8.4-GHz maser-feedhorn system

    Get PDF
    A total system noise temperature of 6.6 K was demonstrated with an 8.4-GHz traveling wave maser and feedhorn operating in a cryogenic environment. Both the maser and feedhorn were inserted in the helium cryostat, with the maser operating in the 1.6-K liquid bath and the feedhorn cooled in the helium gas, with a temperature gradient along the horn ranging from the liquid bath temperature at its lower end to room temperature at its top. The ruby maser exhibited 43 dB of gain with a bandwidth of 76 MHz(-3 dB) centered at 8400 MHz. Discussions of the maser, cooled feedhorn, and cryostat designs are presented along with a discussion of the noise temperature measurements

    The role of beta-lactamase-producing-bacteria in mixed infections

    Get PDF
    Beta-lactamase-producing bacteria (BLPB) can play an important role in polymicrobial infections. They can have a direct pathogenic impact in causing the infection as well as an indirect effect through their ability to produce the enzyme beta-lactamase. BLPB may not only survive penicillin therapy but can also, as was demonstrated in in vitro and in vivo studies, protect other penicillin-susceptible bacteria from penicillin by releasing the free enzyme into their environment. This phenomenon occurs in upper respiratory tract, skin, soft tissue, surgical and other infections. The clinical, in vitro, and in vivo evidence supporting the role of these organisms in the increased failure rate of penicillin in eradication of these infections and the implication of that increased rate on the management of infections is discussed

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin Ī±1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in Ī±1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling Ī±1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms

    Novel C-Terminal Heat Shock Protein 90 Inhibitors (KU711 and Ku757) Are Effective in Targeting Head and Neck Squamous Cell Carcinoma Cancer Stem cells

    Get PDF
    Advanced head and neck squamous cell carcinoma (HNSCC) remains a therapeutic challenge due to the development of therapy resistance. Several studies have implicated the development of cancer stem cells as a possible mechanism for therapy resistance in HNSCC. Heat shock protein 90ā€™s (Hsp90ā€™s) molecular chaperone function is implicated in pathways of resistance in HNSCC. Therefore, in the present study, we investigated the efficacy of novel C-terminal Hsp90 inhibitors (KU711 and KU757) in targeting HNSCC cancer stem cells (CSCs). Treatment of HNSCC human cell lines MDA1986, UMSCC 22B, and UMSCC 22B cisplatin-resistant cells with the KU compounds indicated complete blockage of self-renewal for the resistant and parent cell lines starting from 20 Ī¼M KU711 and 1 Ī¼M KU757. Dose-dependent decrease in the cancer stem cell markers CD44, ALDH, and CD44/ALDH double-positive cells was observed for all cell lines after treatment with KU711 and KU757. When cells were treated with either drug, migration and invasion were downregulated greater than 90% even at the lowest concentrations of 20 Ī¼M KU711 and 1 Ī¼M KU757. Western blot showed >90% reduction in client protein ā€œstemnessā€ marker BMI-1 and mesenchymal marker vimentin, as well as increase in epithelial marker E-cadherin for both cell lines, indicating epithelial to mesenchymal transition quiescence. Several CSC-mediated miRNAs that play a critical role in HNSCC therapy resistance were also downregulated with KU treatment. In vivo, KU compounds were effective in decreasing tumor growth with no observed toxicity. Taken together, these results indicate that KU compounds are effective therapeutics for targeting HNSCC CSCs
    • ā€¦
    corecore