1,352 research outputs found

    Scattering of vortex pairs in 2D easy-plane ferromagnets

    Full text link
    Vortex-antivortex pairs in 2D easy-plane ferromagnets have characteristics of solitons in two dimensions. We investigate numerically and analytically the dynamics of such vortex pairs. In particular we simulate numerically the head-on collision of two pairs with different velocities for a wide range of the total linear momentum of the system. If the momentum difference of the two pairs is small, the vortices exchange partners, scatter at an angle depending on this difference, and form two new identical pairs. If it is large, the pairs pass through each other without losing their identity. We also study head-tail collisions. Two identical pairs moving in the same direction are bound into a moving quadrupole in which the two vortices as well as the two antivortices rotate around each other. We study the scattering processes also analytically in the frame of a collective variable theory, where the equations of motion for a system of four vortices constitute an integrable system. The features of the different collision scenarios are fully reproduced by the theory. We finally compare some aspects of the present soliton scattering with the corresponding situation in one dimension.Comment: 13 pages (RevTeX), 8 figure

    Group analysis and renormgroup symmetries

    Get PDF
    An original regular approach to constructing special type symmetries for boundary value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries, based on modern group analysis are described. Application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model.Comment: 17 pages, RevTeX LATeX file, to appear in Journal of Mathematical Physic

    Aharonov-Casher effect in a two dimensional hole gas with spin-orbit interaction

    Full text link
    We study the quantum interference effects induced by the Aharonov-Casher phase in a ring structure in a two-dimensional heavy hole (HH) system with spin-orbit interaction realizable in narrow asymmetric quantum wells. The influence of the spin-orbit interaction strength on the transport is investigated analytically. These analytical results allow us to explain the interference effects as a signature of the Aharonov-Casher Berry phases. Unlike previous studies on the electron two-dimensional Rashba systems, we find that the frequency of conductance modulations as a function of the spin-orbit strength is not constant but increases for larger spin-orbit splittings. In the limit of thin channel rings (width smaller than Fermi wavelength), we find that the spin-orbit splitting can be greatly increased due to quantization in the radial direction. We also study the influence of magnetic field considering both limits of small and large Zeeman splittings.Comment: 6 pages, 4 figure

    Local redistribution of blood under the effect of fixation stress against a background of hypokinesia

    Get PDF
    Fixation stress was used as a model of emotional disturbance. The effect of previous restrictions on mobility on the local redistribution of blood resulting from fixation stress was examined. Disturbances in carbohydrate which result from prolonged hypokinesia was studied. Radioactivity was used to determine the local redistribution of blood. Modified factor analysis was used to study the results of the experiment

    Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial

    Get PDF
    Transformations of the electronic structure in thin silver layers in metal-dielectric (TiAlN/Ag) multilayer nanocomposite were investigated by a set of electron spectroscopy techniques. Localization of the electronic states in the valence band and reduction of electron concentration in the conduction band was observed. This led to decreasing metallic properties of silver in the thin films. A critical layer thickness of 23.5 nm associated with the development of quantum effects was determined by X-ray photoelectron spectroscopy. Scanning Auger electron microscopy of characteristic energy losses provided images of plasmon localization in the Ag layers. The nonuniformity of plasmon intensities distribution near the metal-nitride interfaces was assessed experimentally

    Development of internal control methodology by using statistical methods of variability assessment of material flow business processes

    Get PDF
    Variability or instability is one of the key features of any process, including business processes of material flow internal control. Variability is a characteristic of all natural systems and technical processes. The objects which properties can be characterized via certain parameters arise at the output of any process. The article discloses the feasibility of using the statistical methods in the internal control system of business entities; in this case the focus is on the method of identifying the causes of variability using control charts of various types (Shewhart control charts) as a prime tool. The view points regarding variability of famous academic economists who researched the business process management issues are also considered. Authors’ classification of business process variation on types of material flow internal control with the allocation of controlled and uncontrolled variation is taken as the basis of the proposed application. The method of using control charts in estimating the efficiency of material flow internal control business processes is described in detail.peer-reviewe

    Nonlinear acoustic waves in channels with variable cross sections

    Full text link
    The point symmetry group is studied for the generalized Webster-type equation describing non-linear acoustic waves in lossy channels with variable cross sections. It is shown that, for certain types of cross section profiles, the admitted symmetry group is extended and the invariant solutions corresponding to these profiles are obtained. Approximate analytic solutions to the generalized Webster equation are derived for channels with smoothly varying cross sections and arbitrary initial conditions.Comment: Revtex4, 10 pages, 2 figure. This is an enlarged contribution to Acoustical Physics, 2012, v.58, No.3, p.269-276 with modest stylistic corrections introduced mainly in the Introduction and References. Several typos were also correcte

    Powerful laser-produced quasi-half-cycle THz pulses

    Full text link
    The Maxwell equations based 3D analytical solution for the terahertz half-cycle electromagnetic wave transition radiation pulse has been found. This solution describes generation and propagation of transition radiation into free space from laser-produced relativistic electron bunch crossing a target-vacuum interface as a result of ultrashort laser pulse interaction with a thin high-conductivity target. The analytical solution found complements the theory of laser initiated transition radiation by describing the generated THz wave shape at the arbitrary distance from the generating target surface domain including near-field zone rather than the standard far-field characterization. The analytical research has also been supplemented with the 3D simulations using the finite-diference time-domain (FDTD) method, which makes it possible for description of much wider spatial domain as compared to that from the particle-in-cell (PIC) approach. The results reported fundamentally shed light on the interfere of an electron bunch field and THz field of broadband transition radiation from laser-plasma interaction studied for a long time in the experiments with solid density plasma and may in future inspire them to targeted measurements and investigations of unique super intense half-cycle THz radiation waves near the laser target

    The July 2010 outburst of the NLS1 PMN J0948+0022

    Get PDF
    We report about the multiwavelength campaign on the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.5846) performed in 2010 July-September and triggered by high activity as measured by Fermi/LAT. The peak luminosity in the 0.1-100 GeV energy band exceeded, for the first time in this type of source, the value of 10^48 erg/s, a level comparable to the most powerful blazars. The comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar - like 3C 273 - shows that the power emitted at gamma rays is extreme.Comment: 2011 Fermi Symposium proceedings - eConf C11050
    corecore