8,834 research outputs found

    Structure of the QCD Vacuum As Seen By Lattice Simulations

    Full text link
    This talk is a review of our studies of instantons and their properties as seen in our lattice simulations of SU(2) gauge theory. We have measured the topological susceptibility and the size distribution of instantons in the QCD vacuum. We have also investigated the properties of quarks moving in instanton background field configurations, where the sizes and locations of the instantons are taken from simulations of the full gauge theory. By themselves, these multi-instanton configurations do not confine quarks, but they induce chiral symmetry breaking.Comment: 18 pages, LaTeX, 8 figures, uses epsf, Talk given at YKIS9

    Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources

    Get PDF
    This paper focuses on the reinforcing of Poly(lactic acid) with chopped basalt fibres by using silane treated and untreated basalt fibres. Composite materials with 5–10–15–20–30–40 wt% basalt fibre contents were prepared from silane sized basalt fibres using extrusion, and injection moulding, while composites with 5–10–15 wt% basalt fibre contents were also prepared by using untreated basalt fibres as control. The properties of the injection moulded composites were extensively examined by using quasi-static (tensile, three-point bending) and dynamic mechanical tests (notched and unnotched Charpy impact tests), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), heat deflection temperature (HDT) analysis, dimensional stability test, as well as melt flow index (MFI) analysis and scanning electron microscopic (SEM) observations. It was found that silane treated chopped basalt fibres are much more effective in reinforcing Poly(lactic acid) than natural fibres; although basalt fibres are not biodegradable but they are still considered as natural (can be found in nature in the form of volcanic rocks) and biologically inert. It is demonstrated in this paper that by using basalt fibre reinforcement, a renewable and natural resource based composite can be produced by injection moulding with excellent mechanical properties suitable even for engineering applications. Finally it was shown that by using adequate drying of the materials, composites with higher mechanical properties can be achieved compared to literature data

    Electron-positron energy deposition rate from neutrino pair annihilation on the rotation axis of neutron and quark stars

    Full text link
    We investigate the deposition of energy due to the annihilations of neutrinos and antineutrinos on the rotation axis of rotating neutron and quark stars, respectively. The source of the neutrinos is assumed to be a neutrino-cooled accretion disk around the compact object. Under the assumption of the separability of the neutrino null geodesic equation of motion we obtain the general relativistic expression of the energy deposition rate for arbitrary stationary and axisymmetric space-times. The neutrino trajectories are obtained by using a ray tracing algorithm, based on numerically solving the Hamilton-Jacobi equation for neutrinos by reversing the proper time evolution. We obtain the energy deposition rates for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the MIT bag model equation of state and in the CFL (Color-Flavor-Locked) phase, respectively. The electron-positron energy deposition rate on the rotation axis of rotating neutron and quark stars is studied for two accretion disk models (isothermal disk and accretion disk in thermodynamical equilibrium). Rotation and general relativistic effects modify the total annihilation rate of the neutrino-antineutrino pairs on the rotation axis of compact stellar, as measured by an observer at infinity. The differences in the equations of state for neutron and quark matter also have important effects on the spatial distribution of the energy deposition rate by neutrino-antineutrino annihilation.Comment: 38 pages, 9 figures, accepted for publication in MNRA

    Electric and Magnetic Fluxes in SU(2) Yang-Mills Theory

    Get PDF
    We measure the free energies in SU(2) of static fundamental charges and center monopoles. Dual to temporal center fluxes, the former provide a well-defined (dis)order parameter for deconfinement. In contrast, the monopole free energies vanish in the thermodynamic limit at all temperatures and are thus irrelevant for the transition.Comment: 3 pages, LaTeX2e (espcrc2.sty), 4 figures (epsfig), for Lattice2002(topology

    Anderson Localization in Quark-Gluon Plasma

    Full text link
    At low temperature the low end of the QCD Dirac spectrum is well described by chiral random matrix theory. In contrast, at high temperature there is no similar statistical description of the spectrum. We show that at high temperature the lowest part of the spectrum consists of a band of statistically uncorrelated eigenvalues obeying essentially Poisson statistics and the corresponding eigenvectors are extremely localized. Going up in the spectrum the spectral density rapidly increases and the eigenvectors become more and more delocalized. At the same time the spectral statistics gradually crosses over to the bulk statistics expected from the corresponding random matrix ensemble. This phenomenon is reminiscent of Anderson localization in disordered conductors. Our findings are based on staggered Dirac spectra in quenched SU(2) lattice simulations.Comment: 11 pages, 8 figure

    The status of pentaquark spectroscopy on the lattice

    Get PDF
    The present work is a summary of the status of lattice pentaquark calculations. After a pedagogic introduction to the basics of lattice hadron spectroscopy we give a critical comparison of results presently available in the literature. Special emphasis is put on presenting some of the possible pitfalls of these calculations. In particular we discuss at length the choice of the hadronic operators and the separation of genuine five-quark states from meson-baryon scattering states.Comment: 13 pages LaTeX, 1 eps figur

    Poisson to Random Matrix Transition in the QCD Dirac Spectrum

    Full text link
    At zero temperature the lowest part of the spectrum of the QCD Dirac operator is known to consist of delocalized modes that are described by random matrix statistics. In the present paper we show that the nature of these eigenmodes changes drastically when the system is driven through the finite temperature cross-over. The lowest Dirac modes that are delocalized at low temperature become localized on the scale of the inverse temperature. At the same time the spectral statistics changes from random matrix to Poisson statistics. We demonstrate this with lattice QCD simulations using 2+1 flavors of light dynamical quarks with physical masses. Drawing an analogy with Anderson transitions we also examine the mobility edge separating localized and delocalized modes in the spectrum. We show that it scales in the continuum limit and increases sharply with the temperature.Comment: 10 pages, 9 eps figures, a few references added and typos correcte
    • …
    corecore