30 research outputs found

    Inhibition of Myostatin Signaling through Notch Activation following Acute Resistance Exercise

    Get PDF
    Myostatin is a TGFb family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9624.21%) and remained high out to 48 h (56.5619.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R2 = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.86147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFb signaling, increased immediately following resistance exercise (83611.2%) and stayed elevated out to 6 h (78616.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63613.4%) that was equivalent to the canonical Notch target HES-1 (94.467.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFb inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy

    Non-invasive muscle contraction assay to study rodent models of sarcopenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates.</p> <p>Methods</p> <p>The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model</p> <p>Results</p> <p>The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves.</p> <p>Conclusions</p> <p>The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy.</p

    Skeletal Muscle Apoptotic Signaling Predicts Thigh Muscle Volume and Gait Speed in Community-Dwelling Older Persons: An Exploratory Study

    Get PDF
    Preclinical studies strongly suggest that accelerated apoptosis in skeletal myocytes may be involved in the pathogenesis of sarcopenia. However, evidence in humans is sparse. In the present study, we investigated whether apoptotic signaling in the skeletal muscle was associated with indices of muscle mass and function in older persons.Community-dwelling older adults were categorized into high-functioning (HF) or low-functioning (LF) groups according to their short physical performance battery (SPPB) summary score. Participants underwent an isokinetic knee extensor strength test and 3-dimensional magnetic resonance imaging of the thigh. Vastus lateralis muscle samples were obtained by percutaneous needle biopsy and assayed for the expression of a set of apoptotic signaling proteins. Age, sex, number of comorbid conditions and medications as well as knee extensor strength were not different between groups. HF participants displayed greater thigh muscle volume compared with LF persons. Multivariate partial least squares (PLS) regressions showed significant correlations between caspase-dependent apoptotic signaling proteins and the muscular percentage of thigh volume (R(2) = 0.78; Q(2) = 0.61) as well as gait speed (R(2) = 0.81; Q(2) = 0.56). Significant variables in the PLS model of percent muscle volume were active caspase-8, cleaved caspase-3, cytosolic cytochrome c and mitochondrial Bak. The regression model of gait speed was mainly described by cleaved caspase-3 and mitochondrial Bax and Bak. PLS predictive apoptotic variables did not differ between functional groups. No correlation was determined between apoptotic signaling proteins and muscle strength or quality (strength per unit volume).Data from this exploratory study show for the first time that apoptotic signaling is correlated with indices of muscle mass and function in a cohort of community-dwelling older persons. Future larger-scale studies are needed to corroborate these preliminary findings and determine if down-regulation of apoptotic signaling in skeletal myocytes will provide improvements in the muscle mass and functional status of older persons

    Identification of Retinoic Acid in a High Content Screen for Agents that Overcome the Anti-Myogenic Effect of TGF-Beta-1

    Get PDF
    Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1.A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC) in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells.Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be useful to screen for less-toxic retinoids or combinations of agents that promote myoblast differentiation in the presence of TGF-β1

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)

    Biopolymeric Nanogel as a Drug Delivery System for Doxorubicin—Improved Drug Stability and Enhanced Antineoplastic Activity in Skin Cancer Cells

    No full text
    In this study, doxorubicin was loaded in a chitosan–albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron microscopy revealed the spherical shape of the nanogel particles. The drug-loaded nanogel was characterized with a small diameter of 29 nm, narrow polydispersity (0.223) and positive zeta potential (+34 mV). The exposure of encapsulated doxorubicin to light (including UV irradiation and daylight) did not provoke any degradation, whereas the nonencapsulated drug was significantly degraded. In vitro studies on keratinocytes (HaCaT) and epidermoid squamous skin carcinoma cells (A-431) disclosed that the encapsulated doxorubicin was more cytotoxic on both cell lines than the pure drug was. More importantly, the cytotoxic concentration of encapsulated doxorubicin in carcinoma cells was approximately two times lower than that in keratinocytes, indicating that it would not affect them. Thus, the loading of doxorubicin into the developed chitosan–albumin nanogel definitely stabilized the drug against photodegradation and increased its antineoplastic effect on the skin cancer cell line

    Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment

    No full text
    Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-β-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels for wound treatment therapy. IR-spectroscopy and XRD analysis confirmed the successful incorporation of resveratrol into complexes. The wound-healing ability of these complexes was estimated by a scratch assay on fibroblasts, which showed a tendency for improvement of the effect of resveratrol after complexation. The antimicrobial activity of resveratrol in aqueous dispersion and in the complexes was evaluated on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans strains. The results revealed a twofold decrease in the MIC and stronger inhibition of the metabolic activity of MRSA after treatment with resveratrol in the complexes compared to the suspended drug. Furthermore, the complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties. The formulated hydrogel showed excellent biocompatibility which was confirmed via skin irritation test on rabbits. In conclusion, Pluronic hydrogel containing resveratrol included in hydroxypropyl-β-cyclodextrin complexes is a promising topical formulation for further studies directed at wound therapy
    corecore