47 research outputs found

    The magnetocaloric effect of partially crystalline Fe-B-Cr-Gd alloys.

    Get PDF
    The influence of annealing temperature and crystallization on the magnetocaloric effect (MCE) of Fe-B-Cr-Gd partially crystalline alloys was studied. Although the alloys exhibited dissimilar devitrification behavior, all the alloys exhibited MCE behavior consistent with a phenomenological universal curve and theoretical power law expressions of the magnetic field dependence of MCE. The TC of partially crystalline Fe75B12Cr8Gd5alloys increased with increasing annealing temperatures. However, peak magnetic entropy change and refrigerant capacity values remained relatively constant, suggesting that these alloys are promising for active magnetic regenerator applications

    A sol-gel method for growing superconducting MgB2 films

    Full text link
    In this paper we report a new sol-gel method for the fabrication of MgB2 films. Polycrystalline MgB2 films were prepared by spin-coating a precursor solution of Mg(BH_4)_2 diethyl ether on (001)Al2O3 substrates followed with annealing in Mg vapor. In comparison with the MgB2 films grown by other techniques, our films show medium qualities including a superconducting transition temperature of Tc ~ 37 K, a critical current density of Jc(5 K, 0 T) ~ 5 {\times} 10^6 A cm^{-2}, and a critical field of H_{c2}(0) ~ 19 T. Such a sol-gel technique shows potential in the commercial fabrication of practically used MgB2 films as well as MgB2 wires and tapes.Comment: 8 pages, 5 figure

    Flexibility of a Eukaryotic Lipidome – Insights from Yeast Lipidomics

    Get PDF
    Mass spectrometry-based shotgun lipidomics has enabled the quantitative and comprehensive assessment of cellular lipid compositions. The yeast Saccharomyces cerevisiae has proven to be a particularly valuable experimental system for studying lipid-related cellular processes. Here, by applying our shotgun lipidomics platform, we investigated the influence of a variety of commonly used growth conditions on the yeast lipidome, including glycerophospholipids, triglycerides, ergosterol as well as complex sphingolipids. This extensive dataset allowed for a quantitative description of the intrinsic flexibility of a eukaryotic lipidome, thereby providing new insights into the adjustments of lipid biosynthetic pathways. In addition, we established a baseline for future lipidomic experiments in yeast. Finally, flexibility of lipidomic features is proposed as a new parameter for the description of the physiological state of an organism

    Mechanochemically synthesized nanocrystalline Sb2S3 particles.

    Get PDF
    Nanocrystalline Sb2S3 particles have been synthesized from Sb and S powders by high-energy milling in a planetary mill using argon protective atmosphere. X-ray diraction, particle size analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electron diraction, high resolution transmission electron microscopy, UV-VIS, and dierential scanning calorimetry methods for characterization of the prepared particles were applied. The powder X-ray diraction pattern shows that Sb2S3 nanocrystals belong to the orthorhombic phase with calculated crystallite size of about 36 nm. The nanocrystalline Sb2S3 particles are constituted by randomly distributed crystalline nanodomains (20 nm) and then these particles are forming aggregates. The monomodal distribution of Sb2S3 particles with the average hydrodynamic parameter 210 nm was obtained. The quantication of energy dispersive X-ray spectroscopy analysis peaks give an atomic ratio of 2:3 for Sb:S. The optical band gap determined from the absorption spectrum is 4.9 eV, indicating a considerable blue shift relative to the bulk Sb2S3. Dierential scanning calorimetry curves exhibit a broad exothermic peak between 200 and 300 C, suggesting recovery processes. This interpretation is supported by X-ray diraction measurements that indicate a 23-fold increase of the crystallite size to about 827 nm as a consequence of application of high temperature process. The controlled mechanochemical synthesis of Sb2S3 nanoparticles at ambient temperature and atmospheric pressure remains a great challenge.Peer Reviewe

    Loss of internal 1 → 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides

    Get PDF
    The fragmentation behavior of [M + H]+ ions of a series of underivatized and per-O-methylated trisaccharides having 1 → 6 linked residues, of which one or two is a deoxy-fluoro or deoxy residue and thus has a unique mass, has been studied by using collision-induced dissociation fast-atom bombardment mass spectrometry. In addition to the usual fragment ions resulting from glycosidic bond cleavage, fragment ions were observed which must have been generated following an unusual rearrangement process which can be rationalized in terms of the loss of an internal monosaccharide residue
    corecore