46 research outputs found

    Influence of a perpendicular magnetic field on the thermal depinning of a single Abrikosov vortex in a superconducting Josephson junction

    Get PDF
    Thermal depinning of a single vortex trapped in a superconducting Josephson junction is studied as a function of an external magnetic field perpendicular to the junction, in order to examine the conditions necessary for establishing a vortex free junction. If a thick normal metal barrier is used in a cross-strip SNIS Josephson junction, then a single vortex can be nucleated in one of the superconducting strips and systematically moved from one location to another. The location of the vortex can be determined because there is a unique connection between the location of the vortex in the junction and the Fraunhofer-like diffraction pattern of the junction. In zero applied field, it was found that the superconducting order parameter Delta/Delta0 when the vortex depins and starts to move around the film at 8.804 K is equal to 0.19. This implies that the superfluid density is 3.4%. In an applied magnetic field of 10 mG perpendicular to the junction, the vortex moves at 8.707 K where Delta/Delta 0 ~ 0.6. The shielding currents from the applied perpendicular field makes the vortex mobile at a lower temperature;The sharp steps seen previously in I0, the critical current density at zero applied field, during the nucleation process in Pb junctions, did not occur in the Nb junctions used in the present work. Once the vortex has been nucleated and begins to move, a rather a semi-continuous step-like behavior was observed both during the field cooling process and the transport current nucleation process. This was because the vortices were nucleated close to the junction\u27s edge where the there is a small spatial variation of I0. This in turn suggests a lower free energy closer to the edge of the junction due to spatial variation of the film thickness, with the films being thinner close to the edge

    Magnetoelastic sensing apparatus and method for remote pressure query of an environment

    Get PDF
    A pressure sensing apparatus for operative arrangement within an environment, having: a sensor comprising a hermetically-sealed receptacle, at least one side of which has an flexible membrane to which a magnetically hard element is attached. Enclosed within the receptacle is a magnetostrictive element that vibrates in response to a time-varying magnetic field. Also included is a receiver to measure a plurality of successive values for magneto-elastic emission intensity of the sensor taken over an operating range of successive interrogation frequencies to identify a resonant frequency value for the sensor. Additional features include: (a) the magnetically hard element may be adhered to an inner or outer side of, or embedded within, the membrane; (b) the magnetostrictive element can include one or more of a variety of different pre-formed, hardened regions; (c) the magneto-elastic emission may be a primarily acoustic or electromagnetic emission; and (d) in the event the time-varying magnetic field is emitted as a single pulse or series of pulses, the receiver unit can detect a transitory time-response of the emission intensity of each pulse (detected after a threshold amplitude value for the transitory time-response is observed). A Fourier transform of the time-response can yield results in the frequency domain. Also, an associated method of sensing pressure of an environment is included that uses a sensor having a magnetostrictive element to identify a magneto-elastic resonant frequency value therefore. Using the magneto-elastic resonant frequency value identified, a value for the pressure of the environment can be identified

    Ground state properties of antiferromagnetic Heisenberg spin rings

    Full text link
    Exact ground state properties of antiferromagnetic Heisenberg spin rings with isotropic next neighbour interaction are presented for various numbers of spin sites and spin quantum numbers. Earlier work by Peierls, Marshall, Lieb, Schultz and Mattis focused on bipartite lattices and is not applicable to rings with an odd number of spins. With the help of exact diagonalization methods we find a more general systematic behaviour which for instance relates the number of spin sites and the individual spin quantum numbers to the degeneracy of the ground state. These numerical findings all comply with rigorous proofs in the cases where a general analysis could be carried out. Therefore it can be plausibly conjectured that the ascertained properties hold for ground states of arbitrary antiferromagnetic Heisenberg spin rings.Comment: 13 pages, 5 figures, uses epsfig.sty, submitted to Phys. Rev. B. More information at http://www.physik.uni-osnabrueck.de/makrosysteme

    Analytical results for entanglement in the five-qubit anisotropic Heisenberg model

    Full text link
    We solve the eigenvalue problem of the five-qubit anisotropic Heisenberg model, without use of Bethe's Ansatz, and give analytical results for entanglement and mixedness of two nearest-neighbor qubits. The entanglement takes its maximum at Delta= (Delta>1) for the case of zero (finite) temperature with Delta being the anisotropic parameter. In contrast, the mixedness takes its minimum at Delta=1 (Delta>1) for the case of zero (finite) temperature.Comment: Four pages, three figure

    Magnetoelastic sensor for characterizing properties of thin-film/coatings

    Get PDF
    An apparatus for determining elasticity characteristics of a thin-film layer. The apparatus comprises a sensor element having a base magnetostrictive element at least one surface of which is at least partially coated with the thin-film layer. The thin-film layer may be of a variety of materials (having a synthetic and/or bio-component) in a state or form capable of being deposited, manually or otherwise, on the base element surface, such as by way of eye-dropper, melting, dripping, brushing, sputtering, spraying, etching, evaporation, dip-coating, laminating, etc. Among suitable thin-film layers for the sensor element of the invention are fluent bio-substances, thin-film deposits used in manufacturing processes, polymeric coatings, paint, an adhesive, and so on. A receiver, preferably remotely located, is used to measure a plurality of values for magneto-elastic emission intensity of the sensor element in either characterization: (a) the measure of the plurality of values is used to identify a magneto-elastic resonant frequency value for the sensor element; and (b) the measure of the plurality of successive values is done at a preselected magneto-elastic frequency

    Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model

    Full text link
    We study the threshold temperature for pairwise thermal entanglement in the spin-1/2 isotropic Heisenberg model up to 11 spins and find that the threshold temperature for odd and even number of qubits approaches the thermal dynamical limit from below and above, respectively. The threshold temperature in the thermodynamical limit is estimated. We investigate the many-particle entanglement in both ground states and thermal states of the system, and find that the thermal state in the four-qubit model is four-particle entangled before a threshold temperature.Comment: 4 pages with 1 fig. More discussions on many-particle ground-state and thermal entanglement in the multiqubit Heisenberg model from 2 to 11 qubits are adde

    Thermal and ground-state entanglement in Heisenberg XX qubit rings

    Get PDF
    We study the entanglement of thermal and ground states in Heisernberg XXXX qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between nearest-neighbor qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state of this model without magnetic fields is shown to be a four-body maximally entangled state measured by the NN-tangle.Comment: Four pages and one figure, small change

    Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    Get PDF
    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure
    corecore