136 research outputs found

    Size dependent strengthening in particle reinforced aluminium

    Get PDF
    The tensile behaviour of composites produced by infiltrating ceramic particle beds with high purity (99.99%) At is studied as a function of reinforcement size and chemistry (Al2O3 and B4C). The yield stress is higher in composites containing B4C particles, increasing with decreasing interparticle distance in both composite systems. The flow stress of the composites, when corrected for damage, displays the same dependence on interparticle distance as the yield stress. The overall strain hardening exponent, however, is independent of the microstructural scale. These observations are rationalized based on the theory of geometrically necessary dislocations. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved

    Quantification of microdamage phenomena during tensile straining of high volume fraction particle reinforced aluminum

    Get PDF
    Particle reinforced composites are produced by infiltrating ceramic particle beds with 99.99% Al. Resulting materials feature a relatively high volume fraction (40-55 vol. pet) of homogeneously distributed reinforcement. The evolution of damage during tensile straining of these composites is monitored using two indirect methods; namely by tracking changes in density and in Young's modulus. Identification and quantification of the active damage mechanisms is conducted on polished sections of failed tensile specimens: particle fracture and void formation in the matrix are the predominant damage micromechanisms in these materials. The damage parameter derived from the change in density at a given strain is found to be one to two orders of magnitude smaller than the parameter based on changes in Young's modulus. A simple micromechanical analysis inspired by the observed damage micromechanisms is used to correlate the two indirect measurements of damage. The predictions of this analysis are in good agreement with experiment. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. AII rights reserved

    Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture

    Get PDF
    Abstract Robotic deposition was used to create an alumina structure with three-dimensional periodicity and submillimeter feature size. Liquid metal infiltration of this structure resulted in an Al 2 O 3 -Al interpenetrating-phase composite exhibiting low thermal expansion and high compressive strength

    CXCL14 preferentially synergizes with homeostatic chemokine receptor systems

    Get PDF
    Reflecting their importance in immunity, the activity of chemokines is regulated on several levels, including tissue and context-specific expression and availability of their cognate receptor on target cells. Chemokine synergism, affecting both chemokine and chemokine receptor function, has emerged as an additional control mechanism. We previously demonstrated that CXCL14 is a positive allosteric modulator of CXCR4 in its ability to synergize with CXCL12 in diverse cellular responses. Here, we have extended our study to additional homeostatic, as well as a selection of inflammatory chemokine systems. We report that CXCL14 strongly synergizes with low (sub-active) concentrations of CXCL13 and CCL19/CCL21 in in vitro chemotaxis with immune cells expressing the corresponding receptors CXCR5 and CCR7, respectively. CXCL14 by itself was inactive, not only on cells expressing CXCR5 or CCR7 but also on cells expressing any other known conventional or atypical chemokine receptor, as assessed by chemotaxis and/or β-arrestin recruitment assays. Furthermore, synergistic migration responses between CXCL14 and inflammatory chemokines CXCL10/CXCL11 and CCL5, targeting CXCR3 and CCR5, respectively, were marginal and occasional synergistic Ca2+ flux responses were observed. CXCL14 bound to 300-19 cells and interfered with CCL19 binding to CCR7-expressing cells, suggesting that these cellular interactions contributed to the reported CXCL14-mediated synergistic activities. We propose a model whereby tissue-expressed CXCL14 contributes to cell localization under steady-state conditions at sites with prominent expression of homeostatic chemokines.publishe
    • …
    corecore