5 research outputs found

    Defining and controlling double quantum dots in single-walled carbon nanotubes

    Full text link
    We report the experimental realization of double quantum dots in single-walled carbon nanotubes. The device consists of a nanotube with source and drain contact, and three additional top-gate electrodes in between. We show that, by energizing these top-gates, it is possible to locally gate a nanotube, to create a barrier, or to tune the chemical potential of a part of the nanotube. At low temperatures we find (for three different devices) that in certain ranges of top-gate voltages our device acts as a double quantum dot, evidenced by the typical honeycomb charge stability pattern.Comment: 9 pages, 3 figure

    Linear Kondo conductance in a quantum dot

    Full text link
    In a tunneling experiment across a quantum dot it is possible to change the coupling between the dot and the contacts at will, by properly tuning the trasparency of the barriers and the temperature. Gate voltages allow for changes of the relative position of the dot addition energies and the Fermi level of the leads. Here we discuss the two limiting cases: weak and strong coupling in the tunneling Hamiltonian. In the latter case Kondo resonant conductance can emerge at low temperature in a Coulomb blockade valley. We give a pedagogical approach to the single-channel Kondo physics at equilibrium and review the Nozieres scattering picture of the correlated fixed point. We emphasize the effect of an applied magnetic field and show how an orbital Kondo effect can take place in vertical quantum dots tuned both to an even and to an odd number of electrons at a level crossing. We extend the approach to the two-channel overscreened Kondo case and discuss recent proposals for detecting the non-Fermi liquid fixed point which could be reached at strong coupling.Comment: 31 pages, invited review articl

    Spin effects in single electron tunneling

    Full text link
    An important consequence of the discovery of giant magnetoresistance in metallic magnetic multilayers is a broad interest in spin dependent effects in electronic transport through magnetic nanostructures. An example of such systems are tunnel junctions -- single-barrier planar junctions or more complex ones. In this review we present and discuss recent theoretical results on electron and spin transport through ferromagnetic mesoscopic junctions including two or more barriers. Such systems are also called ferromagnetic single-electron transistors. We start from the situation when the central part of a device has the form of a magnetic (or nonmagnetic) metallic nanoparticle. Transport characteristics reveal then single-electron charging effects, including the Coulomb staircase, Coulomb blockade, and Coulomb oscillations. Single-electron ferromagnetic transistors based on semiconductor quantum dots and large molecules (especially carbon nanotubes) are also considered. The main emphasis is placed on the spin effects due to spin-dependent tunnelling through the barriers, which gives rise to spin accumulation and tunnel magnetoresistance. Spin effects also occur in the current-voltage characteristics, (differential) conductance, shot noise, and others. Transport characteristics in the two limiting situations of weak and strong coupling are of particular interest. In the former case we distinguish between the sequential tunnelling and cotunneling regimes. In the strong coupling regime we concentrate on the Kondo phenomenon, which in the case of transport through quantum dots or molecules leads to an enhanced conductance and to a pronounced zero-bias Kondo peak in the differential conductance.Comment: topical review (36 figures, 65 pages), to be published in J. Phys.: Condens. Matte

    Recipes for spin-based quantum computing

    Full text link
    Technological growth in the electronics industry has historically been measured by the number of transistors that can be crammed onto a single microchip. Unfortunately, all good things must come to an end; spectacular growth in the number of transistors on a chip requires spectacular reduction of the transistor size. For electrons in semiconductors, the laws of quantum mechanics take over at the nanometre scale, and the conventional wisdom for progress (transistor cramming) must be abandoned. This realization has stimulated extensive research on ways to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. Perhaps the most ambitious goal of spintronics is to realize complete control over the quantum mechanical nature of the relevant spins. This prospect has motivated a race to design and build a spintronic device capable of complete control over its quantum mechanical state, and ultimately, performing computations: a quantum computer. In this tutorial we summarize past and very recent developments which point the way to spin-based quantum computing in the solid-state. After introducing a set of basic requirements for any quantum computer proposal, we offer a brief summary of some of the many theoretical proposals for solid-state quantum computers. We then focus on the Loss-DiVincenzo proposal for quantum computing with the spins of electrons confined to quantum dots. There are many obstacles to building such a quantum device. We address these, and survey recent theoretical, and then experimental progress in the field. To conclude the tutorial, we list some as-yet unrealized experiments, which would be crucial for the development of a quantum-dot quantum computer.Comment: 45 pages, 12 figures (low-res in preprint, high-res in journal) tutorial review for Nanotechnology; v2: references added and updated, final version to appear in journa

    Quantum-to-classical correspondence in open chaotic systems.

    No full text
    We review properties of open chaotic mesoscopic systems with a finite Ehrenfest time �E. The Ehrenfest time separates a short-time regime of the quantum dynamics, where wave packets closely follow the deterministic classical motion, from a long-time regime of fully-developed wave chaos. For a vanishing Ehrenfest time the quantum systems display a degree of universality which is well described by random-matrix theory. In the semiclassical limit, �E becomes parametrically larger than the scattering time off the boundaries and the dwell time in the system. This results in the emergence of an increasing number of deterministic transport and escape modes, which induce strong deviations from random-matrix universality. We discuss these deviations for a variety of physical phenomena, including shot noise, conductance fluctuations, decay of quasi-bound states and the mesoscopic proximity effect in Andreev billiards
    corecore