468 research outputs found

    Spin-transfer torques in anti-ferromagnetic metals from first principles

    Full text link
    In spite of the absence of a macroscopic magnetic moment, an anti-ferromagnet is spin-polarized on an atomic scale. The electric current passing through a conducting anti-ferromagnet is polarized as well, leading to spin-transfer torques when the order parameter is textured, such as in anti-ferromagnetic non-collinear spin valves and domain walls. We report a first principles study on the electronic transport properties of anti-ferromagnetic systems. The current-induced spin torques acting on the magnetic moments are comparable with those in conventional ferromagnetic materials, leading to measurable angular resistances and current-induced magnetization dynamics. In contrast to ferromagnets, spin torques in anti-ferromagnets are very nonlocal. The torques acting far away from the center of an anti-ferromagnetic domain wall should facilitate current-induced domain wall motion.Comment: The paper has substantially been rewritten, 4 pages, 5 figure

    Static critical behavior of the ferromagnetic transition in LaMnO3.14 manganite

    Full text link
    The ferromagnetic phase transition in LaMnO3.14 is investigated by measuring the dc magnetization as a function of magnetic field and temperature. Modified Arrott plot and Kouvel Fisher analysis yield estimates for the critical exponents beta, and gama, with values between that predicted for the Heisenberg model and mean field theory. At low fields we found an anomalous small value of beta, indicating that the critical behavior is influenced by the range of magnetic fields used.Comment: Presented at ICM 2000 conference. Accepted for publication at J. Magn. Magn. Mate

    Multi-k magnetic structures in USb_{0.9}Te_{0.1} and UAs_{0.8}Se_{0.2} observed via resonant x-ray scattering at the U M4 edge

    Full text link
    Experiments with resonant photons at the U M4 edge have been performed on a sample of USb_{0.9}Te_{0.1}, which has an incommensurate magnetic structure with k = 0.596(2) reciprocal lattice units. The reflections of the form , as observed previously in a commensurate k = 1/2 system [N. Bernhoeft et al., Phys. Rev. B 69 174415 (2004)] are observed, removing any doubt that these occur because of multiple scattering or high-order contamination of the incident photon beam. They are clearly connected with the presence of a 3k configuration. Measurements of the reflections from the sample UAs_{0.8}Se_{0.2} in a magnetic field show that the transition at T* ~ 50 K is between a low-temperature 2k and high-temperature 3k state and that this transition is sensitive to an applied magnetic field. These experiments stress the need for quantitative theory to explain the intensities of these reflections.Comment: submitted to Phys. Rev.

    Induced four fold anisotropy and bias in compensated NiFe/FeMn double layers

    Full text link
    A vector spin model is used to show how frustrations within a multisublattice antiferromagnet such as FeMn can lead to four-fold magnetic anisotropies acting on an exchange coupled ferromagnetic film. Possibilities for the existence of exchange bias are examined and shown to exist for the case of weak chemical disorder at the interface in an otherwise perfect structure. A sensitive dependence on interlayer exchange is found for anisotropies acting on the ferromagnet through the exchange coupling, and we show that a wide range of anisotropies can appear even for a perfect crystalline structure with an ideally flat interface.Comment: 7 pages, 7 figure

    Seeking the Equation of State of Non-Compact Lattice QED

    Get PDF
    We perform a high statistics calculation of the equation of state for non-compact QED on large lattices. The calculation extends to fermionic correlation lengths of 8\approx 8, and it is combined with a finite size scaling analysis of the lattice data.Comment: 32 pages, uuencoded Z-compressed postscript file. Also available from http://www.desy.de/pub/preprints/desy/1996

    Probing a ferromagnetic critical regime using nonlinear susceptibility

    Full text link
    The second order para-ferromagnetic phase transition in a series of amorphous alloys (Fe{_5}Co{_{50}}Ni{_{17-x}}Cr{_x}B{_{16}}Si{_{12}}) is investigated using nonlinear susceptibility. A simple molecular field treatment for the critical region shows that the third order suceptibility (chi{_3}) diverges on both sides of the transition temperature, and changes sign at T{_C}. This critical behaviour is observed experimentally in this series of amorphous ferromagnets, and the related assymptotic critical exponents are calculated. It is shown that using the proper scaling equations, all the exponents necessary for a complete characterization of the phase transition can be determined using linear and nonlinear susceptiblity measurements alone. Using meticulous nonlinear susceptibility measurements, it is shown that at times chi{_3} can be more sensitive than the linear susceptibility (chi{_1}) in unravelling the magnetism of ferromagnetic spin systems. A new technique for accurately determining T{_C} is discussed, which makes use of the functional form of chi{_3} in the critical region.Comment: 11 Figures, Submitted to Physical Review

    Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    Full text link
    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.

    Effective critical behaviour of diluted Heisenberg-like magnets

    Full text link
    In agreement with the Harris criterion, asymptotic critical exponents of three-dimensional (3d) Heisenberg-like magnets are not influenced by weak quenched dilution of non-magnetic component. However, often in the experimental studies of corresponding systems concentration- and temperature-dependent exponents are found with values differing from those of the 3d Heisenberg model. In our study, we use the field--theoretical renormalization group approach to explain this observation and to calculate the effective critical exponents of weakly diluted quenched Heisenberg-like magnet. Being non-universal, these exponents change with distance to the critical point TcT_c as observed experimentally. In the asymptotic limit (at TcT_c) they equal to the critical exponents of the pure 3d Heisenberg magnet as predicted by the Harris criterion.Comment: 15 pages, 4 figure

    A numerical reinvestigation of the Aoki phase with N_f=2 Wilson fermions at zero temperature

    Get PDF
    We report on a numerical reinvestigation of the Aoki phase in lattice QCD with two flavors of Wilson fermions where the parity-flavor symmetry is spontaneously broken. For this purpose an explicitly symmetry-breaking source term hψˉiγ5τ3ψh\bar{\psi} i \gamma_{5} \tau^{3}\psi was added to the fermion action. The order parameter was computed with the Hybrid Monte Carlo algorithm at several values of (β,κ,h)(\beta,\kappa,h) on lattices of sizes 444^4 to 12412^4 and extrapolated to h=0h=0. The existence of a parity-flavor breaking phase can be confirmed at β=4.0\beta=4.0 and 4.3, while we do not find parity-flavor breaking at β=4.6\beta=4.6 and 5.0.Comment: 8 pages, 5 figures, Revised version as to be published in Phys.Rev.

    Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems

    Full text link
    Accurate numerical results are presented for the three-dimensional equivalent-neighbor model on a cubic lattice, for twelve different interaction ranges (coordination number between 18 and 250). These results allow the determination of the range dependences of the critical temperature and various critical amplitudes, which are compared to renormalization-group predictions. In addition, the analysis yields an estimate for the interaction range at which the leading corrections to scaling vanish for the spin-1/2 model and confirms earlier conclusions that the leading Wegner correction must be negative for the three-dimensional (nearest-neighbor) Ising model. By complementing these results with Monte Carlo data for systems with coordination numbers as large as 52514, the full finite-size crossover curves between classical and Ising-like behavior are obtained as a function of a generalized Ginzburg parameter. Also the crossover function for the effective magnetic exponent is determined.Comment: Corrected shift of critical temperature and some typos. To appear in Phys. Rev. E. 18 pages RevTeX, including 10 EPS figures. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm
    corecore