1,900 research outputs found

    How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches

    Get PDF
    Performance of the antisymmetrized product of strongly orthogonal geminal (APSG) ansatz in describing ground states of molecules has been extensively explored in the recent years. Not much is known, however, about possibilities of obtaining excitation energies from methods that would rely on the APSG ansatz. In the paper we investigate the recently proposed extended random phase approximations, ERPA and ERPA2, that employ APSG reduced density matrices. We also propose a time-dependent linear response APSG method (TD-APSG). Its relation to the recently proposed phase including natural orbital theory is elucidated. The methods are applied to Li2, BH, H2O, and CH2O molecules at equilibrium geometries and in the dissociating limits. It is shown that ERPA2 and TD-APSG perform better in describing double excitations than ERPA due to inclusion of the so-called diagonal double elements. Analysis of the potential energy curves of Li2, BH, and H2O reveals that ERPA2 and TD-APSG describe correctly excitation energies of dissociating molecules if orbitals involved in breaking bonds are involved. For single excitations of molecules at equilibrium geometries the accuracy of the APSG-based methods approaches that of the time-dependent Hartree-Fock method with the increase of the system size. A possibility of improving the accuracy of the TD-APSG method for single excitations by splitting the electron-electron interaction operator into the long- and short-range terms and employing density functionals to treat the latter is presented

    Non-thermal moduli production during preheating in α\alpha-attractor inflation models

    Full text link
    Production of gravitationally coupled light moduli fields must be suppressed in the early universe, so that its decay products do not alter Big Bang Nucleosynthesis (BBN) predictions for light elements. On the other hand, the moduli quanta can be copiously produced non-thermally during preheating after the end of inflation. In this work, we study the production of moduli in the α\alpha-attractor inflationary model through parametric resonances. For our case, where the inflationary potential at its minimum is quartic, the inflaton field self-resonates, and subsequently induces large production of moduli particles. We find that this production is suppressed for small values of α\alpha. Combining semi-analytical estimation and numerical lattice simulations, we infer the parametric dependence on α\alpha and learn that α\alpha needs to be 108mPl2\lesssim 10^{-8}\,m_{\rm Pl}^2 to be consistent with BBN. This in turn predicts an upper bound on the energy scale of inflation and on the reheating temperature.Comment: v1: 24 pages, 8 figures; v2: 30 pages, 11 figures, added two appendices, updated discussions and references, matches published versio

    Data, Data, Everywhere: Uncovering Everyday Data Experiences for People with Intellectual and Developmental Disabilities

    Full text link
    Data is everywhere but may not be accessible to everyone. Conventional data visualization tools and guidelines often do not actively consider the specific needs and abilities of people with Intellectual and Developmental Disabilities (IDD), leaving them excluded from data-driven activities and vulnerable to ethical issues. To understand the needs and challenges people with IDD have with data, we conducted 15 semi-structured interviews with individuals with IDD and their caregivers. Our algorithmic interview approach situated data in the lived experiences of people with IDD to uncover otherwise hidden data encounters in their everyday life. Drawing on findings and observations, we characterize how they conceptualize data, when and where they use data, and what barriers exist when they interact with data. We use our results as a lens to reimagine the role of visualization in data accessibility and establish a critical near-term research agenda for cognitively accessible visualization

    A Genomewide Overexpression Screen Identifies Genes Involved in the Phosphatidylinositol 3-Kinase Pathway in the Human Protozoan Parasite Entamoeba histolytica

    Get PDF
    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen

    A Genome-Wide Over-Expression Screen Identifies Genes Involved in Phagocytosis in the Human Protozoan Parasite, Entamoeba histolytica

    Get PDF
    Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics

    An evaluation of knowledge, attitude and practice of pharmacovigilance among prescribers in a teaching hospital of south India

    Get PDF
    Background: Adverse drug reactions (ADRs) represent a serious health problem. Effective generation of ADR related data helps in practicing evidence-based medicine and thus prevents many adverse drug reactions. Spontaneous reporting of ADRs has remained the major sources of information of pharmacovigilance. Underreporting of ADRs is a common problem. In order to improve the reporting rate, it is important to improve the Knowledge, Attitude and Practices (KAP) of the prescribers regarding ADR reporting and Pharmacovigilance. Hence this study was undertaken to assess the knowledge, attitude and practice regarding Pharmacovigilance among doctors of Shridevi Institute of Medical Sciences and Research Hospital, Tumkur, Karnataka.Methods: This was a cross sectional, observational, questionnaire based study conducted using a predesigned Knowledge Attitude Practice (KAP) questionnaire among 110 doctors. The completed KAP questionnaire was collected and data analyzed.Results: Most of the doctors (98.15%) accepted that reporting ADR is necessary. 67.31% agreed that ADR reporting is necessary for identifying safety of the drug and 94.44% agreed that pharmacovigilance should be taught in detail to health-care professionals. But there was a huge gap between the ADR experienced (80%), and ADR reported (25.45%) by the prescribers. Only 29.09% medical professionals have ever seen the ADR reporting form and only 16.36% respondents have been trained on reporting on ADR.Conclusions: Study revealed that the majority of the doctors had a good knowledge but poor attitude and practice of pharmacovigilance. They should be trained properly on ADR reporting to improve the current scenario in the pharmacovigilance program of the country

    Distributed System Contract Monitoring

    Get PDF
    The use of behavioural contracts, to specify, regulate and verify systems, is particularly relevant to runtime monitoring of distributed systems. System distribution poses major challenges to contract monitoring, from monitoring-induced information leaks to computation load balancing, communication overheads and fault-tolerance. We present mDPi, a location-aware process calculus, for reasoning about monitoring of distributed systems. We define a family of Labelled Transition Systems for this calculus, which allow formal reasoning about different monitoring strategies at different levels of abstractions. We also illustrate the expressivity of the calculus by showing how contracts in a simple contract language can be synthesised into different mDPi monitors.Comment: In Proceedings FLACOS 2011, arXiv:1109.239

    Entropy of Extremal Black Holes in Two Dimensions

    Full text link
    Entropy for two dimensional extremal black holes is computed explicitly in a finite-space formulation of the black hole thermodynamics and is shown to be zero {\it locally}. Our results are in conformity with the recent one by Hawking et al in four dimensions.Comment: 11 page

    Microstructural evolution under low shear rates during Rheo processing of LM25 alloy

    Get PDF
    © ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure
    corecore