26 research outputs found

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II: The Second Year (2009-2010)

    Full text link
    As an extension of the project in Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 61 SU UMa-type dwarf novae mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (2009): the presence of stages A-C, as well as the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in period derivatives for systems with superhump periods longer than 0.075 d between this study and Kato et al. (2009). We suggest that this difference is possibly caused by the relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. The close correlation between the beat period and superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We also suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O-C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be a result of sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence preceding a rebrightening. We also present a formulation for a variety of Bayesian extension to traditional period analyses.Comment: 63 pages, 77 figures, 1 appendix, Accepted for publication in PASJ, data correctio

    Direct Angiotensin II Type 2 Receptor Stimulation Ameliorates Insulin Resistance in Type 2 Diabetes Mice with PPARγ Activation

    Get PDF
    OBJECTIVES: The role of angiotensin II type 2 (AT(2)) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue. METHODS: T2DM mice, KK-Ay, were subjected to intraperitoneal injection of C21 and/or a PPARγ antagonist, GW9662 in drinking water for 2 weeks. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[(3)H] deoxy-D-glucose in white adipose tissue. Morphological changes of adipose tissues as well as adipocyte differentiation and inflammatory response were examined. RESULTS: Treatment with C21 ameliorated insulin resistance in KK-Ay mice without influencing blood pressure, at least partially through effects on the PPARγ pathway. C21 treatment increased serum adiponectin concentration and decreased TNF-α concentration; however, these effects were attenuated by PPARγ blockade by co-treatment with GW9662. Moreover, we observed that administration of C21 enhanced adipocyte differentiation and PPARγ DNA-binding activity, with a decrease in inflammation in white adipose tissue, whereas these effects of C21 were attenuated by co-treatment with GW9662. We also observed that administration of C21 restored β cell damage in diabetic pancreatic tissue. CONCLUSION: The present study demonstrated that direct AT(2) receptor stimulation by C21 accompanied with PPARγ activation ameliorated insulin resistance in T2DM mice, at least partially due to improvement of adipocyte dysfunction and protection of pancreatic β cells

    Effect of Angiotensin II Type 2 Receptor-Interacting Protein on Adipose Tissue Function via Modulation of Macrophage Polarization

    No full text
    <div><p>We demonstrated that angiotensin II type 2 (AT<sub>2</sub>) receptor-interacting protein (ATIP) 1 ameliorates inflammation-mediated vascular remodeling independent of the AT<sub>2</sub> receptor, leading us to explore the possibility of whether ATIP1 could exert anti-inflammatory effects and play a role in other pathophysiological conditions. We examined the possible anti-inflammatory effects of ATIP1 in adipose tissue associated with amelioration of insulin resistance. In mice fed a high-cholesterol diet, adipose tissue macrophage (ATM) infiltration and M1-to-M2 ratio were decreased in ATIP1 transgenic mice (ATIP1-Tg) compared with wild-type mice (WT), with decreased expression of inflammatory cytokines such as tumor necrosis factor-α and monocyte chemoattractant protein-1 in white adipose tissue (WAT), but an increase in interleukin-10, an anti-inflammatory cytokine. Moreover, 2-[<sup>3</sup>H]deoxy-d-glucose (2-[<sup>3</sup>H]DG) uptake was significantly increased in ATIP1-Tg compared with WT. Next, we examined the roles of ATIP1 in BM-derived hematopoietic cells, employing chimeric mice produced by BM transplantation into irradiated type 2 diabetic mice with obesity, KKAy, as recipients. ATM infiltration and M1-to-M2 ratio were decreased in ATIP1 chimera (ATIP1-tg as BM donor), with improvement of insulin-mediated 2-[<sup>3</sup>H]DG uptake and amelioration of inflammation in WAT. Moreover, serum adiponectin concentration in ATIP1 chimera was significantly higher than that in WT chimera (WT as BM donor) and KKAy chimera (KKAy as BM donor). These results indicate that ATIP1 could exert anti-inflammatory effects in adipose tissue via macrophage polarization associated with improvement of insulin resistance, and ATIP1 in hematopoietic cells may contribute to these beneficial effects on adipose tissue functions in type 2 diabetes.</p> </div

    Cytokine levels and glucose uptake in WAT of ATIP1-Tg and WT after treatment with high-cholesterol diet.

    No full text
    <p>(<b>A</b>) Expression of TNF-α, MCP-1 and IL-10 in epididymal (Epi) and retroperitoneal (Retro) WAT. Open squares; WT, closed squares; ATIP1-Tg. n = 7–8 for each group. *p<0.05 vs. WT. (<b>B</b>) Rate constant of 2-[<sup>3</sup>H] DG uptake in epididymal and retroperitoneal WAT was determined with and without insulin (1.0 U/kg) injection. Open squares; WT, closed squares; ATIP1-Tg. n = 6 for each group.</p

    WAT in ATIP1-Tg and WT after treatment with high-cholesterol diet for 18 weeks.

    No full text
    <p>(<b>A</b>) Ratio of WAT weight to body weight in epididymal and retroperitoneal tissue. (<b>B</b>) Morphological comparison of epididymal WAT. Representative photomicrographs at ×100 magnification and histogram of adipocyte number per field. n = 7–8 for each group.</p

    Glucose uptake and cytokines levels in white adipose tissue and serum levels of TNF-α and adiponectin in each chimeric mouse.

    No full text
    <p>(A) Rate constant of 2-[<sup>3</sup>H] DG uptake in epididymal (Epi) and retroperitoneal (Retro) WAT were determined with and without insulin (1.0 U/kg) injection. n = 6 for each group. (B) Expression of TNF-α, MCP-1 and IL-10 in epididymal and retroperitoneal WAT. n = 6 for each group. (C) Serum TNF-α and adiponectin concentrations measured by ELISA. n = 8–10 for each group. *p<0.05 vs. KKAy chimera and WT chimera.</p

    Macrophage infiltration and polarization in ATIP1-Tg and WT after treatment with high-cholesterol diet.

    No full text
    <p>Cells in the stromal vascular fraction (SVF) of the epididymal fat pad from each mouse were analyzed by flow cytometry as described in “Methods”. (<b>A</b>) Representative results of flow cytometry. F4/80-positive cells were further analyzed with anti-CD11c and anti-CD206 antibodies. Blue dots show M1 macrophages and purple dots show M2 macrophages. Red dots represent both CD11c- and CD206-negative fraction evaluated using isotype controls. (<b>B</b>) Percentage of F4/80-positive cells in SVF. n = 5 for each group. (<b>C</b>) Ratio of M1 to M2 fraction in F4/80-positive cells. Light gray squares; M1 fraction, dark gray squares; M2 fraction. n = 5 for each group.</p
    corecore