108 research outputs found

    Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass

    No full text
    The effect of glass addition on the processing, physical properties and microstructure of lightweight aggregate made from lignite coal fly ash from the Megalopolis power station in Greece has been investigated. Fly ash/glass mixes have been rapidly sintered at temperatures between 1040 and 1120 °C in a rotary furnace, and the density, water absorption and pellet strength determined. Sintering 60:40 fly ash:waste glass mixes at 1120 °C produced lightweight aggregate with a mean density of 1.35 g/cm3, water absorption of ∼16% and crushing strength of 7.3 MPa. Major crystalline phases in sintered materials were quartz (SiO2), albite (NaAlSi3O8), moissanite (SiC), hematite (Fe2O3), wollastonite (CaSiO3) and diopside (CaMg(Si2O6)). The work indicates that Megalopolis fly ash combined with waste glass can be used to manufacture lightweight aggregate with properties comparable to commercially available products. Fly ash and glass are potential resources that are currently waste materials in Greece. The processing involving pelletising and sintering in a rotary kiln is similar to that required for other commercially available lightweight aggregates manufactured from shales, clays and slate, and therefore processing costs are expected to be similar. However, avoiding the costs and environmental impacts associated with importing lightweight aggregate or using pumice makes the production of FA/glass lightweight aggregate a viable option

    Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste

    Full text link
    The properties and microstructure of alkali-activated (AA) vitreous calcium aluminosilicate (VCAS) are presented in this paper. VCAS is manufactured from a by-product of the glass fiber industry and has been activated using NaOH and KOH solutions. The microstructure and mechanical properties of AA VCAS pastes and mortars are reported. The results show that depending on the type and concentration of hydroxide solution used, mortar samples with compressive strengths up to 77 MPa can be formed after curing for three days at 65 °C. The research demonstrates the potential of VCAS to produce AA cements and the importance of alkali type and concentration in optimizing properties and microstructure.Mitsuuchi Tashima, M.; Soriano Martinez, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Cheeseman, CR.; Paya Bernabeu, JJ. (2012). Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials. 1(3):83-93. doi:10.1080/21650373.2012.742610S839313Mahasenan N, Smith S, Humphreys K. The cement industry and global climate change: current and potential future cement industry CO2emissions. Greenhouse Gas Control Technologies – 6th International Conference. Oxford: Pergamon; 2003. p. 995–1000.Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642-650. doi:10.1016/j.cemconres.2011.03.019WBCSD – World Business Council for Sustainable Development. Cement industry energy and CO2performance – Getting numbers right. Edited by WBCSD, Geneva-Switzerland (ISBN 978-3-940388-48-3). 2009.Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. doi:10.1007/s10853-006-0637-zFernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 35(6), 1204-1209. doi:10.1016/j.cemconres.2004.08.021Hossain, A. B., Shirazi, S. A., Persun, J., & Neithalath, N. (2008). Properties of Concrete Containing Vitreous Calcium Aluminosilicate Pozzolan. Transportation Research Record: Journal of the Transportation Research Board, 2070(1), 32-38. doi:10.3141/2070-05Neithalath, N., Persun, J., & Hossain, A. (2009). Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cement and Concrete Research, 39(6), 473-481. doi:10.1016/j.cemconres.2009.03.006Tashima MM, Soriano L, Borrachero MV, Monzó J, Payá J. Effect of curing time on the microstructure and mechanical strength development of alkali activated nbinders based on vitreous calcium aluminosilicate (VCAS). Bull. Mater. Sci. in press.Hemmings RT, Nelson RD, Graves PL, Cornelius BJ. White pozzolan composition and blended cements containing same. Patent US6776838. 2004.Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2005). Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chemistry of Materials, 17(12), 3075-3085. doi:10.1021/cm050230iCriado, M., Fernández-Jiménez, A., de la Torre, A. G., Aranda, M. A. G., & Palomo, A. (2007). An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research, 37(5), 671-679. doi:10.1016/j.cemconres.2007.01.013Rees, C. A., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmuir, 23(17), 9076-9082. doi:10.1021/la701185gLee, W. K. W., & van Deventer, J. S. J. (2003). Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir, 19(21), 8726-8734. doi:10.1021/la026127eGarcía-Lodeiro, I., Fernández-Jiménez, A., Blanco, M. T., & Palomo, A. (2007). FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel Science and Technology, 45(1), 63-72. doi:10.1007/s10971-007-1643-6Barbosa VFF. Sintese e caracterização de polissialatos (Synthesis and characterization of polysialates) [PhD thesis] (in Portuguese). Instituto Militar de Engenharia. Rio de Janeiro - Brazil. 190 p. 1999.Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., Gordillo, M., & Provis, J. L. (2011). Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 46(16), 5477-5486. doi:10.1007/s10853-011-5490-zBoccaccini, A. R., Bücker, M., Bossert, J., & Marszalek, K. (1997). Glass matrix composites from coal flyash and waste glass. Waste Management, 17(1), 39-45. doi:10.1016/s0956-053x(97)00035-4Kourti, I., Rani, D. A., Deegan, D., Boccaccini, A. R., & Cheeseman, C. R. (2010). Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 176(1-3), 704-709. doi:10.1016/j.jhazmat.2009.11.089Lampris, C., Lupo, R., & Cheeseman, C. R. (2009). Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Management, 29(1), 368-373. doi:10.1016/j.wasman.2008.04.007Wu, H.-C., & Sun, P. (2007). New building materials from fly ash-based lightweight inorganic polymer. Construction and Building Materials, 21(1), 211-217. doi:10.1016/j.conbuildmat.2005.06.052Kourti, I., Amutha Rani, D., Boccaccini, A. R., & Cheeseman, C. R. (2011). Geopolymers from DC Plasma–Treated Air Pollution Control Residues, Metakaolin, and Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering, 23(6), 735-740. doi:10.1061/(asce)mt.1943-5533.000017

    Multivariate Statistical Approach for Anomaly Detection and Lost Data Recovery in Wireless Sensor Networks

    Get PDF
    Data loss due to integrity attacks or malfunction constitutes a principal concern in wireless sensor networks (WSNs). The present paper introduces a novel data loss/modification detection and recovery scheme in this context. Both elements, detection and data recovery, rely on a multivariate statistical analysis approach that exploits spatial density, a common feature in network environments such as WSNs. To evaluate the proposal, we consider WSN scenarios based on temperature sensors, both simulated and real. Furthermore, we consider three different routing algorithms, showing the strong interplay among (a) the routing strategy, (b) the negative effect of data loss on the network performance, and (c) the data recovering capability of the approach. We also introduce a novel data arrangement method to exploit the spatial correlation among the sensors in a more efficient manner. In this data arrangement, we only consider the nearest nodes to a given affected sensor, improving the data recovery performance up to 99%. According to the results, the proposed mechanisms based on multivariate techniques improve the robustness of WSNs against data loss.This work has been partially supported by Spanish MICINN (Ministerio de Ciencia e Innovación) through Project TEC2011-22579, by Spanish MINECO (Ministerio de Economía y Competitividad) through Project TIN2014-60346-R, and the FPU P6A grants program of the University of Granada

    Virtual screening, SAR and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor

    Get PDF
    A new series of oxadiazoles were designed to act as inhibitors of the anti-apoptotic Bcl-2 protein. Virtual screening led to the discovery of new hits that interact with Bcl-2 at the BH3 binding pocket. Further study of the structure-activity relationship of the most active compound of the first series, compound 1, led to the discovery of a novel oxadiazole analogue, compound 16j, that was a more potent small molecule inhibitor of Bcl-2. 16j had good in vitro inhibitory activity with sub-micromolar IC50 values in a metastatic human breast cancer cell line (MDA-MB-231) and a human cervical cancer cell line (HeLa). The antitumour effect of 16j is concomitant with its ability to bind to Bcl-2 protein as shown by an enzyme linked immunosorbent assay (IC50 = 4.27 μM). Compound 16j has a great potential to develop into highly active anticancer agent

    Simultaneous clinical resolution of focal segmental glomerulosclerosis associated with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although renal involvement in advanced haematological malignancies is common, glomerulonephritis associated with lymphoproliferative disorders is rare, and the related pathogenetic mechanisms are still poorly understood. We present a rare case of chronic lymphocytic leukaemia(CLL)-associated focal segmental glomerulosclerosis with nephrotic-range proteinuria.</p> <p>Case presentation</p> <p>A 53-year-old Caucasian man, previously healthy, with no history of hypertension, alcohol use or smoking presented with rapid weight gain, massive peripheral oedema, and hypertension. Laboratory findings included a white blood cell count of 49,800 cells/mm<sup>3 </sup>with an absolute lymphocyte count of 47,000 cells/mm<sup>3</sup>, serum albumin of 2.3 g/dL, urea 65 mg/dL, and creatinine 1.5 mg/dL. A 24-hour urine collection contained 7.1 g protein and significant haematuria. A peripheral blood smear showed mature lymphocytosis and smudge cells. Diagnostic imaging showed mild paraaortic lymphadenopathy with no renal abnormalities. Bone marrow aspiration and trephine biopsy showed diffuse and focal infiltration with B-CLL lymphocytes. Percutaneous renal biopsy revealed total sclerosis in 3/21(14%) of the glomeruli and focal and segmental solidification and sclerosis in 4/21 (19%) glomeruli. A regimen of fludarabine, cyclophosphamide and rituximab was successful in inducing remission of the CLL and clinical resolution of the nephritic-range proteinuria.</p> <p>Conclusions</p> <p>A multidisciplinary approach to monitor both the malignancy and the glomerular lesions is crucial for the optimal management of paraneoplastic glomerulonephritis. Although chemotherapy with fludarabine, cyclophosphamide and rituximab successfully treated CLL-associated nephrotic syndrome in our patient, further studies are required to confirm efficacy in this setting.</p

    Alkaline activation of ceramic waste materials

    Get PDF
    Ceramic materials represent around 45 % of construction and demolition waste, and originate not only from the building process, but also as rejected bricks and tiles from industry. Despite the fact that these wastes are mostly used as road sub-base or construction backfill materials, they can also be employed as supplementary cementitious materials, or even as raw material for alkali-activated binders This research aimed to investigate the properties and microstructure of alkali-activated cement pastes and mortars produced from ceramic waste materials of various origins. Sodium hydroxide and sodium silicate were used to prepare the activating solution. The compressive strength of the developed mortars ranged between 22 and 41 MPa after 7 days of curing at 65 C, depending on the sodium concentration in the solution and the water/binder ratio. These results demonstrate the possibility of using alkaliactivated ceramic materials in building applications.The authors are grateful to the Spanish Ministry of Science and Innovation for supporting this study through Project GEOCEDEM BIA 2011-26947, and also to FEDER funding. They also thank Universitat Jaume I for supporting this research through Lucia Reig's granted research stay.Reig Cerdá, L.; Mitsuuchi Tashima, M.; Soriano, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2013). Alkaline activation of ceramic waste materials. Waste and Biomass Valorization. 4:729-736. https://doi.org/10.1007/s12649-013-9197-zS7297364Puertas, F., García-Díaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gómez, M.P., Martínez-Ramírez, S.: Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement Concrete Comp. 30(9), 798–805 (2008)Ministerio de Fomento de España, Catálogo de Residuos Utilizables en Construcción (2010). http://www.cedexmateriales.vsf.es/view/catalogo.aspx . Retrieved on 6 Dec 2012Stock, D.: World production and consumption of ceramic tiles. Tile Today 73, 50–58 (2011)Medina, C., Juan, A., Frías, M., Sánchez-de-Rojas, M.I., Morán, J.M., Guerra, M.I.: Characterization of concrete made with recycled aggregate from ceramic sanitary ware. Mater. Construcc. 61(304), 533–546 (2011)Pacheco-Torgal, F., Jalali, S.: Reusing ceramic wastes in concrete. Constr. Build. Mater. 24(5), 832–838 (2010)Lavat, A.E., Trezza, M.A., Poggi, M.: Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Manage. 29(5), 1666–1674 (2009)Nuran, A., Mevlut, U.: The use of waste ceramic tile in cement production. Cement Concrete Res. 30, 497–499 (2000)Pereira-de-Oliveira, L.A., Castro-Gomes, J.P., Santos, P.M.S.: The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mater. 31, 197–203 (2012)Van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valor. 1, 145–155 (2010)van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. A139, 506–513 (2007)Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2993 (2007)Bernal, S.A., Rodríguez, E.D., de Gutiérrez, R.M., Provis, J.L., Delvasto, S.: Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor. 3, 99–108 (2012)Fernández-Jiménez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement Concrete Res 35, 1204–1209 (2005)Payá, J., Borrachero, M.V., Monzó, J., Soriano, L., Tashima, M.M.: A new geopolymeric binder from hydrated-carbonated cement. Mater. Lett. 74, 223–225 (2012)Kourti, I., Amutha-Rani, D., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. J. Hazard. Mater. 176, 704–709 (2010)Puertas, F., Barba, A., Gazulla, M.F., Gómez, M.P., Palacios, M., Martínez-Ramírez, S.: Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland: caracterización y activación alcalina. Mater. Construcc. 56(281), 73–84 (2006)Reig, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Payá, J.: Nuevas matrices cementantes generadas por Activación Alcalina de residuos cerámicos. II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción, November 8–9, Valencia, Spain, pp. 199–207 (2010)L. Reig, M.M. Tashima, M.V. Borrachero, J. Monzó, J. Payá: Residuos de ladrillos cerámicos en la producción de conglomerantes activados alcalinamente, I Pro-Africa Conference: Non-conventional Building Materials Based on Agroindustrial Wastes, October 18–19, Pirassununga, SP, Brazil, pp. 18–21 (2010)García Ten F.J. Descomposición durante la cocción del carbonato cálcico contenido en el soporte crudo de los azulejos. Tesis de doctorado, Departamento de Ingeniería química, UJI (2005)Baronio, G., Binda, L.: Study of the pozzolanicity of some bricks and clays. Constr. Build. Mater. 11(1), 41–46 (1997)Zanelli, C., Raimondo, M., Guarini, G., Dondi, M.: The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. J. Non-Cryst. Solids 357, 3251–3260 (2011)Carty, W.M., Senapati, U.: Porcelain-raw materials, processing, phase evolution, and mechanical behaviour. J. Am. Ceram. Soc. 81(1), 3–20 (1998)ASCER, COACV, COPUT, ITC-AICE, WEBER ET BROUTIN – CEMARKSA: Guía Baldosa Guía de la baldosa cerámica. IVE: Conselleria d’Obres Públiques, Urbanisme i Transports, 4ª Ed. Valencia (2003)Khater, H.M.: Effect of calcium on geopolimerization of aluminosilicate wastes. J. Mater. Civ. Eng. 24, 92–101 (2012)Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 25, 2906–2910 (2011)Provis, J.L., Harrex, R.M., Bernal, A.S., Duxson, P., van Deventer, J.S.J.: Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J. Non-Cryst. Solids 358, 1930–1937 (2012)Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf. A 269, 47–58 (2005)Tashima, M.M., Akasaki, J.L., Castaldelli, V.N., Soriano, L., Monzó, J., Payá, J., Borrachero, M.V.: New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater. Lett. 80, 50–52 (2012)Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 42, 3073–3082 (2007)Bernal, S.A., Gutierrez, R.M., Provis, J.L., Rose, V.: Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement Concrete Res. 40, 898–907 (2010)Tashima, M.M. Produccion y caracterizacion de materiales cementantes a partir del silicoaluminato calcico vitreo (VCAS). Tesis de doctorado, Departamento de Ingeniería de la construcción y de proyectos de ingeniería civil, UPV (2012)Provis, J.L., van Deventer, J.S.J.: Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 62, 2318–2329 (2007

    Resistance to acid attack, abrasion and leaching behavior of alkali-activated mine waste binders

    Get PDF
    This paper report results of a research project on the development of alkali-activated binders using mine wastes. Abrasion and acid resistance of two ordinary Portland cement (OPC) strength class concrete mixtures (C20/25 and C30/37) and several mine waste (MW) mixtures were compared. This study indicates that MW binders possess higher acid and abrasion resistance than OPC based concrete mixtures.The leaching assessment of the MW binders shows it can be considered an inert material which indicates that it could be used as a building material
    • …
    corecore