12 research outputs found

    Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells

    Get PDF
    Cell division requires cell shape changes involving the localized reorganization of cortical actin, which must be tightly linked with chromosome segregation operated by the mitotic spindle. How this multistep process is coordinated remains poorly understood. In this study, we show that the actin/membrane linker moesin, the single ERM (ezrin, radixin, and moesin) protein in Drosophila melanogaster, is required to maintain cortical stability during mitosis. Mitosis onset is characterized by a burst of moesin activation mediated by a Slik kinase–dependent phosphorylation. Activated moesin homogenously localizes at the cortex in prometaphase and is progressively restricted at the equator in later stages. Lack of moesin or inhibition of its activation destabilized the cortex throughout mitosis, resulting in severe cortical deformations and abnormal distribution of actomyosin regulators. Inhibiting moesin activation also impaired microtubule organization and precluded stable positioning of the mitotic spindle. We propose that the spatiotemporal control of moesin activation at the mitotic cortex provides localized cues to coordinate cortical contractility and microtubule interactions during cell division

    A Global Census of Fission Yeast Deubiquitinating Enzyme Localization and Interaction Networks Reveals Distinct Compartmentalization Profiles and Overlapping Functions in Endocytosis and Polarity

    Get PDF
    Proteomic, localization, and enzymatic activity screens in fission yeast reveal how deubiquitinating enzyme localization and function are tuned

    Etablissement d'une polarité cellulaire lors de la division (implication d'une voie de trafic membranaire régulée par la GTPase Rab35 et des protéines ERM activées)

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Survey of the Phosphorylation Status of the <i>Schizosaccharomyces pombe</i> Deubiquitinating Enzyme (DUB) Family

    No full text
    Ubiquitination plays a role in virtually every cellular signaling pathway ranging from cell cycle control to DNA damage response to endocytosis and gene regulation. The bulk of our knowledge of the ubiquitination system is centered on modification of specific substrate proteins and the enzymatic cascade of ubiquitination. Our understanding of the regulation of the reversal of these modifications (deubiquitination) lags significantly behind. We recently reported a multifaceted study of the fission yeast <i>Schizosaccharomyces pombe</i> DUBs including characterization of their binding partners, <i>in vitro</i> enzymatic activity and subcellular localization. Over half of the 20 fission yeast DUBs have a stable protein partner and some of those partners regulate the localization and/or activity of their cognate DUB. As a next step in understanding how DUBs might otherwise be regulated, we investigated the phosphostatus of the entire fission yeast DUB family using LC−MS/MS, and here we discuss the possible implications of phosphoregulation

    Severe Arterial Hypertension from Cullin 3 Mutations Is Caused by Both Renal and Vascular Effects

    No full text
    International audienceBackground Mutations in four genes, WNK lysine deficient protein kinase 1 and 4 (WNK1 and WNK4), kelch like family member 3 (KLHL3), or Cullin 3 (CUL3), can result in familial hyperkalemic hypertension (FHHt), a rare Mendelian form of human arterial hypertension. Although all mutations result in an increased abundance of WNK1 or WNK4, all FHHt-causing CUL3 mutations, resulting in the skipping of exon 9, lead to a more severe phenotype. Methods We created and compared two mouse models, one expressing the mutant Cul3 protein ubiquitously (pgk-Cul3∆9) and the other specifically in vascular smooth muscle cells (SM22-Cul3∆9). We conducted pharmacologic investigations on isolated aortas and generated stable and inducible HEK293 cell lines that overexpress the wild-type Cul3 or mutant Cul3 (Cul3∆9) protein. Results As expected, pgk-Cul3∆9 mice showed marked hypertension with significant hyperkalemia, hyperchloremia and low renin. BP increased significantly in SM22-Cul3∆9 mice, independent of any measurable effect on renal transport. Only pgk-Cul3∆9 mice displayed increased expression of the sodium chloride cotransporter and phosphorylation by the WNK-SPAK kinases. Both models showed altered reactivity of isolated aortas to phenylephrine and acetylcholine, as well as marked acute BP sensitivity to the calcium channel blocker amlodipine. Aortas from SM22-Cul3∆9 mice showed increased expression of RhoA, a key molecule involved in regulation of vascular tone, compared with aortas from control mice. We also observed increased RhoA abundance and t1/2 in Cul3∆9-expressing cells, caused by decreased ubiquitination. Conclusions Mutations in Cul3 cause severe hypertension by affecting both renal and vascular function, the latter being associated with activation of RhoA

    Cullin 3 Exon 9 Deletion in Familial Hyperkalemic Hypertension Impairs Cullin3-Ring-E3 Ligase (CRL3) Dynamic Regulation and Cycling

    No full text
    International audienceCullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes' dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners
    corecore