2,153 research outputs found

    Current clinical management of smoke inhalation injuries: a reality check

    Get PDF
    Smoke inhalation injury is a complex clinical condition and respiratory clinicians need to have a good understanding of its current clinical management. However, evidence derives mostly from retrospective cohorts and case series. Is this enough

    Survival and quality of life benefit after endoscopic management of malignant central airway obstruction

    Get PDF
    Although interventional management of malignant central airway obstruction (mCAO) is well established, its impact on survival and quality of life (QoL) has not been extensively studied.We prospectively assessed survival, QoL and dyspnea (using validated EORTC questionnaire) in patients with mCAO 1 day before interventional bronchoscopy, 1 week after and every following month, in comparison to patients who declined this approach. Material/Patients/Methods: 36 patients underwent extensive interventional bronchoscopic management as indicated, whereas 12 declined. All patients received full chemotherapy and radiotherapy as indicated. Patients of the 2 groups were matched for age, comorbidities, type of malignancy and level of obstruction. Follow up time was 8.0±8.7 (range 1-38) months.Mean survival for intervention and control group was 10±9 and 4±3 months respectively (p=0.04). QoL improved significantly in intervention group patients up to the 6(th) month (p<0.05) not deteriorating for those surviving up to 12 months. Dyspnea decreased in patients of the intervention group 1 month post procedure remaining reduced for survivors over the 12th month. Patients of the control group had worse QoL and dyspnea in all time points.Interventional management of patients with mCAO, may achieve prolonged survival with sustained significant improvement of QoL and dyspnea

    The fall in exhaled nitric oxide with ventilation at low lung volumes in rabbits : an index of small airway injury

    Get PDF
    The mechanisms involved in the fall of exhaled nitric oxide (NOe) concentration occurring in normal, anesthetized open chest rabbits with prolonged mechanical ventilation (MV) at low lung volume have been investigated. NOe, pH of exhaled vapor condensate, serum prostaglandin E(2), and F(2alpha), tumor necrosis factor (TNF-alpha), PaO(2), PaCO(2), pHa, and lung mechanics were assessed before, during, and after 3-4h of MV at zero end-expiratory pressure (ZEEP), with fixed tidal volume (9 ml kg(-1)) and frequency, as well as before and after 3-4h of MV on PEEP only. Lung histology and wet-to-dry ratio (W/D), and prostaglandin and TNF-alpha in bronchoalveolar lavage fluid (BALF) were also assessed. While MV on PEEP had no effect on the parameters above, MV on ZEEP caused a marked fall (45%) of NOe, with a persistent increase of airway resistance (45%) and lung elastance (12%). Changes in NOe were independent of prostaglandin and TNF-alpha levels, systemic hypoxia, hypercapnia and acidosis, bronchiolar and alveolar interstitial edema, and pH of exhaled vapor condensate. In contrast, there was a significant relationship between the decrease in NOe and bronchiolar epithelial injury score. This indicates that the fall in NOe, which occurs in the absence of an inflammatory response, is due to the epithelial damage caused by the abnormal stresses related to cyclic opening and closing of small airways with MV on ZEEP, and suggests its use as a sign of peripheral airway injury

    Vascular endothelial growth factor and cysteinyl leukotrienes in sputum supernatant of patients with asthma

    Get PDF
    SummaryBackgroundVascular endothelial growth factor (VEGF) is considered to be the most important angiogenic factor in asthma. Cysteinyl leukotrienes (Cyst-LTs) have been implicated in vascular permeability in asthma. Cyst-LTs receptor antagonists modulate vascular permeability by reducing VEGF expression.ObjectiveWe aimed to determine the levels of VEGF and Cyst-LTs in sputum supernatants of patients with asthma and to investigate possible associations within them and with airway vascular permeability (AVP) index. Possible confounding factors were also assessed.MethodsOne hundred twenty one patients with asthma (38 with severe refractory asthma, 41 smokers) and 30 healthy subjects (15 smokers) were studied. All subjects underwent lung function tests, and sputum induction for cell count identification and VEGF, Cyst-LTs, measurement in supernatants. AVP index was also assessed.ResultsBoth VEGF & Cyst-LTs (pg/ml) levels were significantly elevated in patients with asthma compared to normal subjects (median, interquartile ranges 845 [487–1034] vs. 432 (327–654) and 209 [171–296] vs. 92 [75–114] respectively, p < 0.001 for both). Multivariate regression analysis in the whole group showed a significant association of Cyst-LTs levels in sputum supernatants with VEGF levels in sputum supernatants and AVP index. A similar positive association was observed between VEGF levels in sputum supernatants and AVP index. The presence of Severe asthma was a significant covariate for both associations.ConclusionOur results indicate that Cyst-LTs may modulate vascular permeability by up-regulating VEGF expression. The above effect seems to be affected by asthma severity

    Lung Microbiome in Asthma : Current Perspectives

    Get PDF
    A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the "lung-gut axis", and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment

    Home-based maintenance tele-rehabilitation reduces the risk for acute exacerbations of COPD, hospitalisations and emergency department visits

    Get PDF
    Pulmonary rehabilitation (PR) remains grossly underutilised by suitable patients worldwide. We investigated whether home-based maintenance tele-rehabilitation will be as effective as hospital-based maintenance rehabilitation and superior to usual care in reducing the risk for acute chronic obstructive pulmonary disease (COPD) exacerbations, hospitalisations and emergency department (ED) visits. Following completion of an initial 2-month PR programme this prospective, randomised controlled trial (between December 2013 and July 2015) compared 12 months of home-based maintenance tele-rehabilitation (n=47) with 12 months of hospital-based, outpatient, maintenance rehabilitation (n=50) and also to 12 months of usual care treatment (n=50) without initial PR. In a multivariate analysis during the 12-month follow-up, both home-based tele-rehabilitation and hospital-based PR remained independent predictors of a lower risk for 1) acute COPD exacerbation (incidence rate ratio (IRR) 0.517, 95% CI 0.389–0.687, and IRR 0.635, 95% CI 0.473–0.853), respectively, and 2) hospitalisations for acute COPD exacerbation (IRR 0.189, 95% CI 0.100–0.358, and IRR 0.375, 95% CI 0.207–0.681), respectively. However, only home-based maintenance tele-rehabilitation and not hospital-based, outpatient, maintenance PR was an independent predictor of ED visits (IRR 0.116, 95% CI 0.072–0.185). Home-based maintenance tele-rehabilitation is equally effective as hospital-based, outpatient, maintenance PR in reducing the risk for acute COPD exacerbation and hospitalisations. In addition, it encounters a lower risk for ED visits, thereby constituting a potentially effective alternative strategy to hospital-based, outpatient, maintenance PR

    Identification of medium mass (A=60-80) ejectiles from 15 MeV/nucleon peripheral heavy-ion collisions with the MAGNEX large-acceptance spectrometer

    Full text link
    An approach to identify medium-mass ejectiles from peripheral heavy-ion reactions in the energy region of 15 MeV/nucleon is developed for data obtained with a large acceptance magnetic spectrometer. This spectrometer is equipped with a focal plane multidetector, providing position, angle, energy loss and residual energy of the ions along with measurement of the time-of-flight. Ion trajectory reconstruction is performed at high order and ion mass is obtained with a resolution of better than 1/150. For the unambiguous particle identification however, the reconstruction of both the atomic number Z and the ionic charge q of the ions is critical and it is suggested, within this work, to be performed prior to mass identification. The new proposed method was successfully applied to MAGNEX spectrometer data, for identifying neutron-rich ejectiles related to multinucleon transfer generated in the 70Zn+ 64Ni collision at 15 MeV/nucleon. This approach opens up the possibility of employing heavy-ion reactions with medium-mass beams below the Fermi energy (i.e., in the region 15-25 MeV/nucleon) in conjunction with large acceptance ray tracing spectrometers, first, to study the mechanism(s) of nucleon transfer in these reactions and, second, to produce and study very neutron-rich or even new nuclides in previously unexplored regions of the nuclear landscape.Comment: 6 pages, 6figure

    Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research - a consensus document from six scientific societies

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity worldwide, with high and growing prevalence. Its underdiagnosis and hence under-treatment is a general feature across all countries. This is particularly true for the mild or early stages of the disease, when symptoms do not yet interfere with daily living activities and both patients and doctors are likely to underestimate the presence of the disease. A diagnosis of COPD requires spirometry in subjects with a history of exposure to known risk factors and symptoms. Postbronchodilator forced expiratory volume in 1 second (FEV1)/forced vital capacity &lt;0.7 or less than the lower limit of normal confirms the presence of airflow limitation, the severity of which can be measured by FEV1% predicted: stage 1 defines COPD with mild airflow limitation, which means postbronchodilator FEV1 6580% predicted. In recent years, an elegant series of studies has shown that "exclusive reliance on spirometry, in patients with mild airflow limitation, may result in underestimation of clinically important physiologic impairment". In fact, exercise tolerance, diffusing capacity, and gas exchange can be impaired in subjects at a mild stage of airflow limitation. Furthermore, growing evidence indicates that smokers without overt abnormal spirometry have respiratory symptoms and undergo therapy. This is an essential issue in COPD. In fact, on one hand, airflow limitation, even mild, can unduly limit the patient's physical activity, with deleterious consequences on quality of life and even survival; on the other hand, particularly in younger subjects, mild airflow limitation might coincide with the early stage of the disease. Therefore, we thought that it was worthwhile to analyze further and discuss this stage of "mild COPD". To this end, representatives of scientific societies from five European countries have met and developed this document to stimulate the attention of the scientific community on COPD with "mild" airflow limitation. The aim of this document is to highlight some key features of this important concept and help the practicing physician to understand better what is behind "mild" COPD. Future research should address two major issues: first, whether mild airflow limitation represents an early stage of COPD and what the mechanisms underlying the evolution to more severe stages of the disease are; and second, not far removed from the first, whether regular treatment should be considered for COPD patients with mild airflow limitation, either to prevent progression of the disease or to encourage and improve physical activity or both

    Modelling Processes and Products in the Cereal Chain

    Full text link
    [EN] In recent years, modelling techniques have become more frequently adopted in the field of food processing, especially for cereal-based products, which are among the most consumed foods in the world. Predictive models and simulations make it possible to explore new approaches and optimize proceedings, potentially helping companies reduce costs and limit carbon emissions. Nevertheless, as the different phases of the food processing chain are highly specialized, advances in modelling are often unknown outside of a single domain, and models rarely take into account more than one step. This paper introduces the first high-level overview of modelling techniques employed in different parts of the cereal supply chain, from farming to storage, from drying to milling, from processing to consumption. This review, issued from a networking project including researchers from over 30 different countries, aims at presenting the current state of the art in each domain, showing common trends and synergies, to finally suggest promising future venues for research.The authors would like to acknowledge networking and article processing charge support by COST Action CA15118 (Mathematical and Computer Science Methods for Food Science and Industry).Carvalho, O.; Charalambides, MN.; Djekic, I.; Athanassiou, C.; Bakalis, S.; Benedito Fort, JJ.; Briffaz, A.... (2021). Modelling Processes and Products in the Cereal Chain. Foods. 10(1):1-18. https://doi.org/10.3390/foods10010082S11810
    • …
    corecore