24 research outputs found

    Tumor size and proliferative marker geminin levels associated with SUVmax levels on PET for breast cancers

    Get PDF
    It has been well established that maximum standardized uptake value (SUVmax) for 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) is clinically useful for evaluating treatment efficacy as well as predicting prognosis of breast cancer patients. Although SUVmax reflects increased glucose uptake and metabolism possibly induced by activation of growth factor signaling or TP53 dysfunction, tumor characteristics of SUVmax-high breast cancers remain to be elucidated. For the present study, we used immunohistochemical staining to investigate expressions of phospho-ribosomal protein S6 (pS6, downstream molecule of phosphatidyl inositol 3-kinase/Akt/mammalian target of the rapamycin/S6K pathway) and phosphor-p44/42 mitogen-activated protein kinase (pMAPK). Expression levels of TP53 and proliferative marker geminin as well as Ki67 were also examined by means of immunostaining in 163 invasive breast cancers. Cutoff values were set at 10% for pS6, 20% for pMAPK and TP53, and 4% for geminin. The SUVmax levels were significantly higher in the pS6-positive (p = 0.0173), TP53-positive (p = 0.0207) and geminin-high cancers (p2cm and geminin-high showed SUVmax-high, while only 6 of 49 (12.2%) breast cancers ≤2cm in size and with low geminin levels were SUVmax-high. In conclusion, we could determine that breast cancers with a large tumor and a geminin-high rather than Ki67- high proliferative marker were significantly associated with high levels of SUVmax. These findings may signify that SUVmax reflects tumor characteristics with high proliferative activity but not activation of mTOR/S6K and MAPK pathways or increased glucose metabolism due to dysfunction of TP53

    Investigation of Proteomic Profiles of Lamina of Ecklonia kurome (Laminariales): Homology-Based Cross-Species Protein Identification and Analysis of the Post-translational Processing of Vanadium-Dependent Bromoperoxidases Using MALDI-TOF/TOF

    Get PDF
    Proteomic profiles of the lamina of Ecklonia kurome Okamura, one of the Japanese dominant laminarialean kelps, were investigated by two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF. Due to the absence of E. kurome DNA or protein databases, homology-based cross-species protein identification was performed using a combination of three database-searching algorithms, Mascot peptide mass fingerprinting, Mascot MS/MS ion search, and mass spectrometry-based BLAST. Proteins were extracted from the lamina by an ethanol/phenol method and subjected to 2-DE (pI 4-7, 10 % polyacrylamide gel). More than 700 spots were detected in the 2-DE gel with CBB, and 93 spots (24 proteins) were successfully identified by MALDI-TOF/TOF and the cross-species database searching. The identified proteins mainly consisted of cytoplasmic carbohydrate metabolic enzymes, chloroplast proteins involved in photosynthesis, and haloperoxidases. Interestingly, vanadium-dependent bromoperoxidases (vBPO), which is thought to be involved in halogen uptake, synthesis of halogenated products, and detoxification of reactive oxygen species, were separated into at least 23 different spots. By comparing mass spectra, amino acid sequences predicted from tandem mass spectra and haloperoxidase activities of the vBPOs, we found that (1) at least two types of vBPOs were expressed in the lamina of E. kurome and (2) two pro-vBPOs might be activated by specific cleavage at N- and C-terminal regions

    Peptoid-Based Reprogrammable Template for Cell-Permeable Inhibitors of Protein–Protein Interactions

    No full text
    The development of inhibitors of intracellular protein–protein interactions (PPIs) is of great significance for drug discovery, but the generation of a cell-permeable molecule with high affinity to protein is challenging. Oligo(N-substituted glycines) (oligo-NSGs), referred to as peptoids, are attractive as potential intracellular PPI inhibitors owing to their high membrane permeability. However, their intrinsically flexible backbones make the rational design of inhibitors difficult. Here, we propose a peptoid-based rational approach to develop cell-permeable PPI inhibitors using oligo(N-substituted alanines) (oligo-NSAs). The rigid structures of oligo-NSAs enable independent optimization of each N-substituent to improve binding affinity and membrane permeability, while preserving the backbone shape. A molecule with optimized N-substituents inhibited a target PPI in cells, which demonstrated the utility of oligo-NSA as a reprogrammable template to develop intracellular PPI inhibitors. </div

    A Peptoid with Extended Shape in Water

    No full text
    “Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </div

    Tumor size and proliferative marker geminin rather than Ki67 expression levels significantly associated with maximum uptake of 18F-deoxyglucose levels on positron emission tomography for breast cancers.

    No full text
    It has been well established that maximum standardized uptake value (SUVmax) for 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) is clinically useful for evaluating treatment efficacy as well as predicting prognosis of breast cancer patients. Although SUVmax reflects increased glucose uptake and metabolism possibly induced by activation of growth factor signaling or TP53 dysfunction, tumor characteristics of SUVmax-high breast cancers remain to be elucidated. For the present study, we used immunohistochemical staining to investigate expressions of phospho-ribosomal protein S6 (pS6, downstream molecule of phosphatidyl inositol 3-kinase/Akt/mammalian target of the rapamycin/S6K pathway) and phosphor-p44/42 mitogen-activated protein kinase (pMAPK). Expression levels of TP53 and proliferative marker geminin as well as Ki67 were also examined by means of immunostaining in 163 invasive breast cancers. Cutoff values were set at 10% for pS6, 20% for pMAPK and TP53, and 4% for geminin. The SUVmax levels were significantly higher in the pS6-positive (p = 0.0173), TP53-positive (p = 0.0207) and geminin-high cancers (p2cm and geminin-high showed SUVmax-high, while only 6 of 49 (12.2%) breast cancers ≤2cm in size and with low geminin levels were SUVmax-high. In conclusion, we could determine that breast cancers with a large tumor and a geminin-high rather than Ki67-high proliferative marker were significantly associated with high levels of SUVmax. These findings may signify that SUVmax reflects tumor characteristics with high proliferative activity but not activation of mTOR/S6K and MAPK pathways or increased glucose metabolism due to dysfunction of TP53

    RBMX: A Regulator for Maintenance and Centromeric Protection of Sister Chromatid Cohesion

    Get PDF
    Cohesion is essential for the identification of sister chromatids and for the biorientation of chromosomes until their segregation. Here, we have demonstrated that an RNA-binding motif protein encoded on the X chromosome (RBMX) plays an essential role in chromosome morphogenesis through its association with chromatin, but not with RNA. Depletion of RBMX by RNA interference (RNAi) causes the loss of cohesin from the centromeric regions before anaphase, resulting in premature chromatid separation accompanied by delocalization of the shugoshin complex and outer kinetochore proteins. Cohesion defects caused by RBMX depletion can be detected as early as the G2 phase. Moreover, RBMX associates with the cohesin subunits, Scc1 and Smc3, and with the cohesion regulator, Wapl. RBMX is required for cohesion only in the presence of Wapl, suggesting that RBMX is an inhibitor of Wapl. We propose that RBMX is a cohesion regulator that maintains the proper cohesion of sister chromatids

    Actinidain-hydrolyzed Type I Collagen Reveals a Crucial Amino Acid Sequence in Fibril Formation*

    No full text
    We investigated the ability of type I collagen telopeptides to bind neighboring collagen molecules, which is thought to be the initial event in fibrillogenesis. Limited hydrolysis by actinidain protease produced monomeric collagen, which consisted almost entirely of α1 and α2 chains. As seen with ultrahigh resolution scanning electron microscopy, actinidain-hydrolyzed collagen exhibited unique self-assembly, as if at an intermediate stage, and formed a novel suprastructure characterized by poor fibrillogenesis. Then, the N- and C-terminal sequences of chicken type I collagen hydrolyzed by actinidain or pepsin were determined by Edman degradation and de novo sequence analysis with matrix-assisted laser desorption ionization-tandem time-of-flight mass spectrometry, respectively. In the C-telopeptide region of the α1 chain, pepsin cleaved between Asp1035 and Phe1036, and actinidain between Gly1032 and Gly1033. Thus, the actinidain-hydrolyzed α1 chain is shorter at the C terminus by three residues, Gly1033, Phe1034, and Asp1035. In the α2 chain, both proteases cleaved between Glu1030 and Val1031. We demonstrated that a synthetic nonapeptide mimicking the α1 C-terminal sequence including GFD weakly inhibited the self-assembly of pepsin-hydrolyzed collagen, whereas it remarkably accelerated that of actinidain-hydrolyzed collagen. We conclude that the specific GFD sequence of the C-telopeptide of the α1 chain plays a crucial role in stipulating collagen suprastructure and in subsequent fibril formation
    corecore