41 research outputs found

    The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver

    Get PDF
    Secreted frizzled-related protein (sFRP) 4 is an adipokine with increased expression in white adipose tissue from obese subjects with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Yet, it is unknown whether sFRP4 action contributes to the development of these pathologies. Here, we determined whether sFRP4 expression in visceral fat associates with NAFLD and whether it directly interferes with insulin action and lipid and glucose metabolism in primary hepatocytes and myotubes. The association of sFRP4 with clinical measures was investigated in obese men with or without type 2 diabetes and with or without biopsy-proven NAFLD. To determine the impact of sFRP4 on metabolic parameters, primary human myotubes (hSkMC), or primary hepatocytes from metabolic healthy C57B16 and from systemic insulin-resistant mice, i.e. aP2-SREBP-1c, were used. Gene expression of sFRP4 in visceral fat from obese men associated with insulin sensitivity, triglycerides and NAFLD. In C57B16 hepatocytes, sFRP4 disturbed insulin action. Specifically, sFRP4 decreased the abundance of IRS1 and FoxO1 together with impaired insulin-mediated activation of Akt-signalling and glycogen synthesis and a reduced suppression of gluconeogenesis by insulin. Moreover, sFRP4 enhanced insulin-stimulated hepatic de novo lipogenesis (DNL). In hSkMC, sFRP4 induced glycolysis rather than inhibiting insulin signalling. Finally, in hepatocytes from aP2-SREBP-1c mice, sFRP4 potentiates existing insulin resistance. Collectively, we show that sFRP4 interferes with hepatocyte insulin action. Physiologically, sFRP4 promotes DNL in hepatocytes and glycolysis in myotubes. These sFRP4-mediated responses may result in a vicious cycle, in which enhanced rates of DNL and glycolysis aggravate hepatic lipid accumulation and insulin resistance

    Preventing Phosphorylation of Sterol Regulatory Element-Binding Protein 1a by MAP-Kinases Protects Mice from Fatty Liver and Visceral Obesity

    Get PDF
    The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK) or p38 stress activated MAP kinases. Serine 117 is also the major phosphorylation site in SREBP-1a for JNK. In contrast to that the major phosphorylation sites of p38 MAPK family are serine 63 and threonine 426. Functional analyses reveal that phosphorylation of SREBP-1a does not alter protein/DNA interaction. The identified phosphorylation sites are specific for both kinase families also in cellular context. To provide direct evidence that phosphorylation of SREBP-1a is a regulatory principle of biological and clinical relevance, we generated transgenic mice expressing mature transcriptionally active N-terminal domain of human SREBP–1a variant lacking all identified phosphorylaton sites designed as alb-SREBP-1aΔP and wild type SREBP-1a designed as alb-SREBP-1a liver specific under control of the albumin promoter and a liver specific enhancer. In contrast to alb-SREBP–1a mice the phosphorylation–deficient mice develop no enlarged fatty livers under normocaloric conditions. Phenotypical examination reveales a massive accumulation of adipose tissue in alb-SREBP-1a but not in the phosphorylation deficient alb-SREBP-1aΔP mice. Moreover, preventing phosphorylation of SREBP-1a protects mice also from dyslipidemia. In conclusion, phosphorylation of SREBP-1a by ERK, JNK and p38 MAPK-families resembles a biological principle and plays a significant role, in vivo

    Liver-Specific Expression of Transcriptionally Active SREBP-1c Is Associated with Fatty Liver and Increased Visceral Fat Mass

    Get PDF
    The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by 50% (p<0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum was not altered. Serum analyses revealed a ∼2-fold (p<0.01) increase in triglycerides and free fatty acids, and a ∼3-fold (p<0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin resistance

    Lipodystrophies—Disorders of the Fatty Tissue

    No full text
    Lipodystrophies are a heterogeneous group of physiological changes characterized by a selective loss of fatty tissue. Here, no fat cells are present, either through lack of differentiation, loss of function or premature apoptosis. As a consequence, lipids can only be stored ectopically in non-adipocytes with the major health consequences as fatty liver and insulin resistance. This is a crucial difference to being slim where the fat cells are present and store lipids if needed. A simple clinical classification of lipodystrophies is based on congenital vs. acquired and generalized vs. partial disturbance of fat distribution. Complications in patients with lipodystrophy depend on the clinical manifestations. For example, in diabetes mellitus microangiopathic complications such as nephropathy, retinopathy and neuropathy may develop. In addition, due to ectopic lipid accumulation in the liver, fatty liver hepatitis may also develop, possibly with cirrhosis. The consequences of extreme hypertriglyceridemia are typically acute pancreatitis or eruptive xanthomas. The combination of severe hyperglycemia with dyslipidemia and signs of insulin resistance can lead to premature atherosclerosis with its associated complications of coronary heart disease, peripheral vascular disease and cerebrovascular changes. Overall, lipodystrophy is rare with an estimated incidence for congenital (&lt;1/1.000.000) and acquired (1&ndash;9/100.000) forms. Due to the rarity of the syndrome and the phenotypic range of metabolic complications, only studies with limited patient numbers can be considered. Experimental animal models are therefore useful to understand the molecular mechanisms in lipodystrophy and to identify possible therapeutic approaches

    Divergent phenotypes in siblings with identical novel mutations in the HNF-1α gene leading to maturity onset diabetes of the young type 3

    Get PDF
    BACKGROUND: Maturity onset diabetes of the young (MODY) is an autosomal dominant form of non–insulin-dependent diabetes mellitus caused by mutations in at least 13 different genes. The hepatocyte nuclear factor (HNF)-1α gene is affected in the most common form (HNF1A-MODY [MODY3]). CASE PRESENTATION: We describe the co-inheritance of a novel heterozygous missense mutation c.1761C &gt; G (p.Pro588Ala) with a novel complex deletion insertion mutation (c.1765_1766delinsGCCCGfs86*) in the HNF-1α gene among affected members of one family. Both mutations were present in the affected patients and neither was present in unaffected family members. The family had not only inheritance of MODY but also increased susceptibility to type 2 diabetes. Therefore one family member had classical type 2 diabetes including metabolic syndrome aggravated by a genetic predisposition in the form of HNF1A-MODY. CONCLUSION: The presence of common type 2 diabetes features should not detract from the possibility of MODY in patients with a striking autosomal-dominant family history

    Inactivation of SREBP-1a Phosphorylation Prevents Fatty Liver Disease in Mice: Identification of Related Signaling Pathways by Gene Expression Profiles in Liver and Proteomes of Peroxisomes

    No full text
    The key lipid metabolism transcription factor sterol regulatory element-binding protein (SREBP)-1a integrates gene regulatory effects of hormones, cytokines, nutrition and metabolites as lipids, glucose, or cholesterol via phosphorylation by different mitogen activated protein kinase (MAPK) cascades. We have previously reported the impact of SREBP-1a phosphorylation on the phenotype in transgenic mouse models with liver-specific overexpression of the N-terminal transcriptional active domain of SREBP-1a (alb-SREBP-1a) or a MAPK phosphorylation site-deficient variant (alb-SREBP-1a∆P; (S63A, S117A, T426V)), respectively. In this report, we investigated the molecular basis of the systemic observations by holistic analyses of gene expression in liver and of proteome patterns in lipid-degrading organelles involved in the pathogenesis of metabolic syndrome, i.e., peroxisomes, using 2D-DIGE and mass spectrometry. The differences in hepatic gene expression and peroxisomal protein patterns were surprisingly small between the control and alb-SREBP-1a mice, although the latter develop a severe phenotype with visceral obesity and fatty liver. In contrast, phosphorylation site-deficient alb-SREBP-1a∆P mice, which are protected from fatty liver disease, showed marked differences in hepatic gene expression and peroxisomal proteome patterns. Further knowledge-based analyses revealed that disruption of SREBP-1a phosphorylation resulted in massive alteration of cellular processes, including signs for loss of targeting lipid pathways

    Weight gain and Food intake of C57Bl6, alb-SREBP-1aΔP and alb-SREBP-1a transgenic animals.

    No full text
    <p>Male C57Bl6, alb-SREBP-1aΔP and alb-SREBP-1a mice (n = 20 per genotype) were housed as groups of four under standard conditions with unlimited access to water and regular chow (13.0 MJ/kg: 53% carbohydrates, 11% fat, 36% protein). Weight gain (<b>A</b>) and Food intake (<b>B</b>) were measured once a week starting at weaning and monitored for an observation period of 18 weeks. Body weight (<b>C</b>), liver weight ((<b>D</b>) and WAT weight (<b>E</b>) were determined at sacrification. WAT contend per body weight (<b>F</b>), food uptake per body weight and (<b>G</b>) weight gain per food uptake (<b>H</b>) were determined in each group of mice. Data are given as means including standard deviation (±SD).</p
    corecore