208 research outputs found

    Hepatic amoebiasis

    Get PDF
    Thirty-two cases of hepatic amoebiasis with some unusual features are presented. The clinical spectrum and the value of investigations such as liver scanning, angiography and slide agglutination test are presented. Therapy is outlined.S. Afr. Med. J., 48, 1159 (1974

    Cosmological Constant, Conical Defect and Classical Tests of General Relativity

    Get PDF
    We investigate the perihelion shift of the planetary motion and the bending of starlight in the Schwarzschild field modified by the presence of a Λ\Lambda-term plus a conical defect. This analysis generalizes an earlier result obtained by Islam (Phys. Lett. A 97, 239, 1983) to the case of a pure cosmological constant. By using the experimental data we obtain that the parameter ϵ\epsilon characterizing the conical defect is less than 10910^{-9} and 10710^{-7}, respectively, on the length scales associated with such phenomena. In particular, if the defect is generated by a cosmic string, these values correspond to limits on the linear mass densities of 1019g/cm10^{19}g/cm and 1021g/cm10^{21}g/cm, respectively.Comment: 9 pages, no figures, revte

    Ernst equation and spheroidal coordinates with a cosmological constant term

    Full text link
    We discuss solution generating techniques treating stationary and axially symmetric metrics in the presence of a cosmological constant. Using the recently found extended form of Ernst's complex equation, which takes into account the cosmological constant term, we propose an extension of spheroidal coordinates adapted to asymptotically de-Sitter and anti de-Sitter static spacetimes. In the absence of a cosmological constant we show in addition that any higher dimensional metric parametrised by a single angular momentum can be given by a 4 dimensional solution and Weyl potentials parametrising the extra Killing directions. We explicitly show how a stationary, and a static axially symmetric spacetime solution in 4 dimensions, can be {\it added} together to give a 5 dimensional stationary and axisymmetric solution.Comment: 9 pages, no figures, some additional results to gr-qc/0610091. Prepared for 12th Conference on Recent Developments in Gravity (NEB XII), Nafplio, Greece, 29 Jun - 2 Jul 200

    Towards the classification of static vacuum spacetimes with negative cosmological constant

    Get PDF
    We present a systematic study of static solutions of the vacuum Einstein equations with negative cosmological constant which asymptotically approach the generalized Kottler (``Schwarzschild--anti-de Sitter'') solution, within (mainly) a conformal framework. We show connectedness of conformal infinity for appropriately regular such space-times. We give an explicit expression for the Hamiltonian mass of the (not necessarily static) metrics within the class considered; in the static case we show that they have a finite and well defined Hawking mass. We prove inequalities relating the mass and the horizon area of the (static) metrics considered to those of appropriate reference generalized Kottler metrics. Those inequalities yield an inequality which is opposite to the conjectured generalized Penrose inequality. They can thus be used to prove a uniqueness theorem for the generalized Kottler black holes if the generalized Penrose inequality can be established.Comment: the discussion of our results includes now some solutions of Horowitz and Myers; typos corrected here and there; a shortened version of this version will appear in Journal of Mathematical Physic

    A Cosmological No-Hair Theorem

    Full text link
    A generalisation of Price's theorem is given for application to Inflationary Cosmologies. Namely, we show that on a Schwarzschild--de Sitter background there are no static solutions to the wave or gravitational perturbation equations for modes with angular momentum greater than their intrinsic spin.Comment: 9 pages, NCL94 -TP4, (Revtex

    Maxwell's theory on a post-Riemannian spacetime and the equivalence principle

    Get PDF
    The form of Maxwell's theory is well known in the framework of general relativity, a fact that is related to the applicability of the principle of equivalence to electromagnetic phenomena. We pose the question whether this form changes if torsion and/or nonmetricity fields are allowed for in spacetime. Starting from the conservation laws of electric charge and magnetic flux, we recognize that the Maxwell equations themselves remain the same, but the constitutive law must depend on the metric and, additionally, may depend on quantities related to torsion and/or nonmetricity. We illustrate our results by putting an electric charge on top of a spherically symmetric exact solution of the metric-affine gauge theory of gravity (comprising torsion and nonmetricity). All this is compared to the recent results of Vandyck.Comment: 9 pages, REVTeX, no figures; minor changes, version to be published in Class. Quantum Gra

    The structure of the extreme Schwarzschild-de Sitter space-time

    Full text link
    The extreme Schwarzschild-de Sitter space-time is a spherically symmetric solution of Einstein's equations with a cosmological constant Lambda and mass parameter m>0 which is characterized by the condition that 9 Lambda m^2=1. The global structure of this space-time is here analyzed in detail. Conformal and embedding diagrams are constructed, and synchronous coordinates which are suitable for a discussion of the cosmic no-hair conjecture are presented. The permitted geodesic motions are also analyzed. By a careful investigation of the geodesics and the equations of geodesic deviation, it is shown that specific families of observers escape from falling into the singularity and approach nonsingular asymptotic regions which are represented by special "points" in the complete conformal diagram. The redshift of signals emitted by particles which fall into the singularity, as detected by those observers which escape, is also calculated.Comment: 19 pages, 10 figures, LaTeX, to appear in Gen. Rel. Gra

    No-Bang Quantum State of the Cosmos

    Full text link
    A quantum state of the entire cosmos (universe or multiverse) is proposed which is the equal mixture of the Giddings-Marolf states that are asymptotically single de Sitter spacetimes in both past and future and are regular on the throat or neck of minimal three-volume. That is, states are excluded that have a big bang or big crunch or which split into multiple asymptotic de Sitter spacetimes. (For simplicity, transitions between different values of the cosmological constant are assumed not to occur, though different positive values are allowed.) The entropy of this mixed state appears to be of the order of the three-fourths power of the Bekenstein-Hawking A/4 entropy of de Sitter spacetime. Most of the component pure states do not have rapid inflation, but when an inflaton is present and the states are weighted by the volume at the end of inflation, a much smaller number of states may dominate and give a large amount of inflation and hence may agree with observations.Comment: 18 pages, LaTeX, updated with a few new qualifications and reference

    Spherically Symmetric Braneworld Solutions with R_{4} term in the Bulk

    Get PDF
    An analysis of a spherically symmetric braneworld configuration is performed when the intrinsic curvature scalar is included in the bulk action; the vanishing of the electric part of the Weyl tensor is used as the boundary condition for the embedding of the brane in the bulk. All the solutions outside a static localized matter distribution are found; some of them are of the Schwarzschild-(A)dS_{4} form. Two modified Oppenheimer-Volkoff interior solutions are also found; one is matched to a Schwarzschild-(A)dS_{4} exterior, while the other does not. A non-universal gravitational constant arises, depending on the density of the considered object; however, the conventional limits of the Newton's constant are recovered. An upper bound of the order of TeV for the energy string scale is extracted from the known solar system measurements (experiments). On the contrary, in usual brane dynamics, this string scale is calculated to be larger than TeV.Comment: 23 pages, 1 figure, one minor chang

    Congenital Hypogonadotropic Hypogonadism Due to GNRH Receptor Mutations in Three Brothers Reveal Sites Affecting Conformation and Coupling

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is characterized by low gonadotropins and failure to progress normally through puberty. Mutations in the gene encoding the GnRH receptor (GNRHR1) result in CHH when present as compound heterozygous or homozygous inactivating mutations. This study identifies and characterizes the properties of two novel GNRHR1 mutations in a family in which three brothers display normosmic CHH while their sister was unaffected. Molecular analysis in the proband and the affected brothers revealed two novel non-synonymous missense GNRHR1 mutations, present in a compound heterozygous state, whereas their unaffected parents possessed only one inactivating mutation, demonstrating the autosomal recessive transmission in this kindred and excluding X-linked inheritance equivocally suggested by the initial pedigree analysis. The first mutation at c.845 C>G introduces an Arg substitution for the conserved Pro 282 in transmembrane domain (TMD) 6. The Pro282Arg mutant is unable to bind radiolabeled GnRH analogue. As this conserved residue is important in receptor conformation, it is likely that the mutation perturbs the binding pocket and affects trafficking to the cell surface. The second mutation at c.968 A>G introduces a Cys substitution for Tyr 323 in the functionally crucial N/DPxxY motif in TMD 7. The Tyr323Cys mutant has an increased GnRH binding affinity but reduced receptor expression at the plasma membrane and impaired G protein-coupling. Inositol phosphate accumulation assays demonstrated absent and impaired Gαq/11 signal transduction by Pro282Arg and Tyr323Cys mutants, respectively. Pretreatment with the membrane permeant GnRHR antagonist NBI-42902, which rescues cell surface expression of many GNRHR1 mutants, significantly increased the levels of radioligand binding and intracellular signaling of the Tyr323Cys mutant but not Pro282Arg. Immunocytochemistry confirmed that both mutants are present on the cell membrane albeit at low levels. Together these molecular deficiencies of the two novel GNRHR1 mutations lead to the CHH phenotype when present as a compound heterozygote
    corecore