A quantum state of the entire cosmos (universe or multiverse) is proposed
which is the equal mixture of the Giddings-Marolf states that are
asymptotically single de Sitter spacetimes in both past and future and are
regular on the throat or neck of minimal three-volume. That is, states are
excluded that have a big bang or big crunch or which split into multiple
asymptotic de Sitter spacetimes. (For simplicity, transitions between different
values of the cosmological constant are assumed not to occur, though different
positive values are allowed.) The entropy of this mixed state appears to be of
the order of the three-fourths power of the Bekenstein-Hawking A/4 entropy of
de Sitter spacetime. Most of the component pure states do not have rapid
inflation, but when an inflaton is present and the states are weighted by the
volume at the end of inflation, a much smaller number of states may dominate
and give a large amount of inflation and hence may agree with observations.Comment: 18 pages, LaTeX, updated with a few new qualifications and reference