78 research outputs found

    Dynamic probabilistic linear discriminant analysis for video classification

    Get PDF
    Component Analysis (CA) comprises of statistical techniques that decompose signals into appropriate latent components, relevant to a task-at-hand (e.g., clustering, segmentation, classification). Recently, an explosion of research in CA has been witnessed, with several novel probabilistic models proposed (e.g., Probabilistic Principal CA, Probabilistic Linear Discriminant Analysis (PLDA), Probabilistic Canonical Correlation Analysis). PLDA is a popular generative probabilistic CA method, that incorporates knowledge regarding class-labels and furthermore introduces class-specific and sample-specific latent spaces. While PLDA has been shown to outperform several state-of-the-art methods, it is nevertheless a static model; any feature-level temporal dependencies that arise in the data are ignored. As has been repeatedly shown, appropriate modelling of temporal dynamics is crucial for the analysis of temporal data (e.g., videos). In this light, we propose the first, to the best of our knowledge, probabilistic LDA formulation that models dynamics, the so-called Dynamic-PLDA (DPLDA). DPLDA is a generative model suitable for video classification and is able to jointly model the label information (e.g., face identity, consistent over videos of the same subject), as well as dynamic variations of each individual video. Experiments on video classification tasks such as face and facial expression recognition show the efficacy of the proposed metho

    The Hybrid Approach to Intervention of Chronic Total Occlusions

    Get PDF
    The "hybrid" approach to chronic total occlusion (CTO) percutaneous coronary intervention (PCI) was developed to provide guidance on optimal crossing strategy selection. Dual angiography remains the cornerstone of clinical decision making in CTO PCI. Four angiographic parameters are assessed: (a) morphology of the proximal cap (clear-cut or ambiguous); (b) occlusion length; (c) distal vessel size and presence of bifurcations beyond the distal cap; and (d) location and suitability of location and suitability of a retrograde conduit (collateral channels or bypass grafts) for retrograde access. Antegrade wire escalation is favored for short (<20 mm) occlusions, usually escalating rapidly from a soft tapered-tip polymer-jacketed guidewire to a stiff polymer-jacketed or tapered-tip guidewire. Antegrade dissection/re-entry is favored in long (≄20 mm long) occlusions, trying to minimize the dissection length by re-entering into the distal true lumen immediately after the occlusion. Primary retrograde approach is preferred for lesions with an ambiguous proximal cap, poor distal target, good interventional collaterals, and heavy calcification,as well as chronic kidney disease. The "hybrid" approach advocates early change between strategies to enable CTO crossing in the most efficacious, efficient, and safe way. Several early studies are demonstrating high success and low complication rates with use of the "hybrid" approach, supporting its expanding use in CTO PCI

    Facial affect "in the wild": a survey and a new database

    Get PDF
    Well-established databases and benchmarks have been developed in the past 20 years for automatic facial behaviour analysis. Nevertheless, for some important problems regarding analysis of facial behaviour, such as (a) estimation of affect in a continuous dimensional space (e.g., valence and arousal) in videos displaying spontaneous facial behaviour and (b) detection of the activated facial muscles (i.e., facial action unit detection), to the best of our knowledge, well-established in-the-wild databases and benchmarks do not exist. That is, the majority of the publicly available corpora for the above tasks contain samples that have been captured in controlled recording conditions and/or captured under a very specific milieu. Arguably, in order to make further progress in automatic understanding of facial behaviour, datasets that have been captured in in the-wild and in various milieus have to be developed. In this paper, we survey the progress that has been recently made on understanding facial behaviour in-the-wild, the datasets that have been developed so far and the methodologies that have been developed, paying particular attention to deep learning techniques for the task. Finally, we make a significant step further and propose a new comprehensive benchmark for training methodologies, as well as assessing the performance of facial affect/behaviour analysis/ understanding in-the-wild. To the best of our knowledge, this is the first time that such a benchmark for valence and arousal "in-the-wild" is presente

    Dynamic probabilistic linear discriminant analysis for video classification

    Get PDF
    Component Analysis (CA) comprises of statistical techniques that decompose signals into appropriate latent components, relevant to a task-at-hand (e.g., clustering, segmentation, classification). Recently, an explosion of research in CA has been witnessed, with several novel probabilistic models proposed (e.g., Probabilistic Principal CA, Probabilistic Linear Discriminant Analysis (PLDA), Probabilistic Canonical Correlation Analysis). PLDA is a popular generative probabilistic CA method, that incorporates knowledge regarding class-labels and furthermore introduces class-specific and sample-specific latent spaces. While PLDA has been shown to outperform several state-of-the-art methods, it is nevertheless a static model; any feature-level temporal dependencies that arise in the data are ignored. As has been repeatedly shown, appropriate modelling of temporal dynamics is crucial for the analysis of temporal data (e.g., videos). In this light, we propose the first, to the best of our knowledge, probabilistic LDA formulation that models dynamics, the so-called Dynamic-PLDA (DPLDA). DPLDA is a generative model suitable for video classification and is able to jointly model the label information (e.g., face identity, consistent over videos of the same subject), as well as dynamic variations of each individual video. Experiments on video classification tasks such as face and facial expression recognition show the efficacy of the proposed metho

    Aff-Wild: Valence and Arousal ‘in-the-wild’ Challenge

    Get PDF
    The Affect-in-the-Wild (Aff-Wild) Challenge proposes a new comprehensive benchmark for assessing the performance of facial affect/behaviour analysis/understanding 'in-the-wild'. The Aff-wild benchmark contains about 300 videos (over 2,000 minutes of data) annotated with regards to valence and arousal, all captured 'in-the-wild' (the main source being Youtube videos). The paper presents the database description, the experimental set up, the baseline method used for the Challenge and finally the summary of the performance of the different methods submitted to the Affect-in-the-Wild Challenge for Valence and Arousal estimation. The challenge demonstrates that meticulously designed deep neural networks can achieve very good performance when trained with in-the-wild data

    AgeDB: the first manually collected, in-the-wild age database

    Get PDF
    Over the last few years, increased interest has arisen with respect to age-related tasks in the Computer Vision community. As a result, several "in-the-wild" databases annotated with respect to the age attribute became available in the literature. Nevertheless, one major drawback of these databases is that they are semi-automatically collected and annotated and thus they contain noisy labels. Therefore, the algorithms that are evaluated in such databases are prone to noisy estimates. In order to overcome such drawbacks, we present in this paper the first, to the best of knowledge, manually collected "in-the-wild" age database, dubbed AgeDB, containing images annotated with accurate to the year, noise-free labels. As demonstrated by a series of experiments utilizing state-of-the-art algorithms, this unique property renders AgeDB suitable when performing experiments on age-invariant face verification, age estimation and face age progression "in-the-wild"

    The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking

    Get PDF
    In this article, we present the Menpo 2D and Menpo 3D benchmarks, two new datasets for multi-pose 2D and 3D facial landmark localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment

    Deep affect prediction in-the-wild: Aff-wild database and challenge, deep architectures, and beyond

    Get PDF
    Automatic understanding of human affect using visual signals is of great importance in everyday human–machine interac- tions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished using latent continuous dimensions (e.g., the circumplex model of affect). Valence (i.e., how positive or negative is an emo- tion) and arousal (i.e., power of the activation of the emotion) constitute popular and effective representations for affect. Nevertheless, the majority of collected datasets this far, although containing naturalistic emotional states, have been captured in highly controlled recording conditions. In this paper, we introduce the Aff-Wild benchmark for training and evaluating affect recognition algorithms. We also report on the results of the First Affect-in-the-wild Challenge (Aff-Wild Challenge) that was recently organized in conjunction with CVPR 2017 on the Aff-Wild database, and was the first ever challenge on the estimation of valence and arousal in-the-wild. Furthermore, we design and extensively train an end-to-end deep neural architecture which performs prediction of continuous emotion dimensions based on visual cues. The proposed deep learning architecture, AffWildNet, includes convolutional and recurrent neural network layers, exploiting the invariant properties of convolutional features, while also modeling temporal dynamics that arise in human behavior via the recurrent layers. The AffWildNet produced state-of-the-art results on the Aff-Wild Challenge. We then exploit the AffWild database for learning features, which can be used as priors for achieving best performances both for dimensional, as well as categorical emo- tion recognition, using the RECOLA, AFEW-VA and EmotiW 2017 datasets, compared to all other methods designed for the same goal. The database and emotion recognition models are available at http://ibug.doc.ic.ac.uk/resources/first-affect-wild-challenge

    The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking

    Get PDF
    In this article, we present the Menpo 2D and Menpo 3D benchmarks, two new datasets for multi-pose 2D and 3D facial landmark localisation and tracking. In contrast to the previous benchmarks such as 300W and 300VW, the proposed benchmarks contain facial images in both semi-frontal and profile pose. We introduce an elaborate semi-automatic methodology for providing high-quality annotations for both the Menpo 2D and Menpo 3D benchmarks. In Menpo 2D benchmark, different visible landmark configurations are designed for semi-frontal and profile faces, thus making the 2D face alignment full-pose. In Menpo 3D benchmark, a united landmark configuration is designed for both semi-frontal and profile faces based on the correspondence with a 3D face model, thus making face alignment not only full-pose but also corresponding to the real-world 3D space. Based on the considerable number of annotated images, we organised Menpo 2D Challenge and Menpo 3D Challenge for face alignment under large pose variations in conjunction with CVPR 2017 and ICCV 2017, respectively. The results of these challenges demonstrate that recent deep learning architectures, when trained with the abundant data, lead to excellent results. We also provide a very simple, yet effective solution, named Cascade Multi-view Hourglass Model, to 2D and 3D face alignment. In our method, we take advantage of all 2D and 3D facial landmark annotations in a joint way. We not only capitalise on the correspondences between the semi-frontal and profile 2D facial landmarks but also employ joint supervision from both 2D and 3D facial landmarks. Finally, we discuss future directions on the topic of face alignment

    Facial Affect ``in-the-wild": A survey and a new database

    Get PDF
    Well-established databases and benchmarks have been developed in the past 20 years for automatic facial behaviour analysis. Nevertheless, for some important problems regarding analysis of facial behaviour, such as (a) estimation of affect in a continuous dimensional space (e.g., valence and arousal) in videos displaying spontaneous facial behaviour and (b) detection of the activated facial muscles (i.e., facial action unit detection), to the best of our knowledge, well-established in-the-wild databases and benchmarks do not exist. That is, the majority of the publicly available corpora for the above tasks contain samples that have been captured in controlled recording conditions and/or captured under a very specific milieu. Arguably, in order to make further progress in automatic understanding of facial behaviour, datasets that have been captured in in-the-wild and in various milieus have to be developed. In this paper, we survey the progress that has been recently made on understanding facial behaviour inthe-wild, namely the datasets and methodologies that have been developed thus far, while paying particular attention to recently proposed deep learning techniques. Finally, we attempt a significant step further by proposing a novel, comprehensive benchmark that can be utilized for evaluating and training various methodologies for the problems of facial affect, behaviour analysis and understanding ”inthe-wild”. To the best of our knowledge, this is the first benchmark proposed for measuring continuous affect in the valence-arousal space ”in-the-wild”
    • 

    corecore