3,623 research outputs found

    Spin polaron in the J1-J2 Heisenberg model

    Full text link
    We have studied the validity of the spin polaron picture in the frustrated J1-J2 Heisenberg model. For this purpose, we have computed the hole spectral functions for the Neel, collinear, and disordered phases of this model, by means of the self-consistent Born approximation and Lanczos exact diagonalization on finite-size clusters. We have found that the spin polaron quasiparticle excitation is always well defined for the magnetically ordered Neel and collinear phases, even in the vicinity of the magnetic quantum critical points, where the local magnetization vanishes. As a general feature, the effect of frustration is to increase the amplitude of the multimagnon states that build up the spin polaron wave function, leading to the reduction of the quasiparticle coherence. Based on Lanczos results, we discuss the validity of the spin polaron picture in the disordered phase.Comment: 9 pages, 12 figure

    Poisson homology of r-matrix type orbits I: example of computation

    Full text link
    In this paper we consider the Poisson algebraic structure associated with a classical rr-matrix, i.e. with a solution of the modified classical Yang--Baxter equation. In Section 1 we recall the concept and basic facts of the rr-matrix type Poisson orbits. Then we describe the rr-matrix Poisson pencil (i.e the pair of compatible Poisson structures) of rank 1 or CPnCP^n-type orbits of SL(n,C)SL(n,C). Here we calculate symplectic leaves and the integrable foliation associated with the pencil. We also describe the algebra of functions on CPnCP^n-type orbits. In Section 2 we calculate the Poisson homology of Drinfeld--Sklyanin Poisson brackets which belong to the rr-matrix Poisson family

    Удосконалення хірургічної тактики міні-інвазивного лікування гострих абсцесів печінки

    Get PDF
    The article adduces the experience of treatment of 48 patients with acute liver abscesses. All patients were operated usingmini-invasive ultrasound technology under control. The results of surgical treatment changed from active to more restrained.Number of complications was 13.8 %, mortality of 2 %. Thus, mini-invasive intervention is not only appropriate, but shouldbe used with the severity of the disease, age of patients, presence of comorbidities; their effectiveness and the advantage overtraditional is evident.У статті наведено досвід лікування 48 хворих із гострими абсцесами печінки. Всі пацієнти були оперовані шляхом ви-користання міні-інвазивних технологій під контролем ультразвуку. Представлено результати зміненої хірургічної так-тики від активної до більш стриманішої. Кількість ускладнень склала 13,8 %, летальність – 2 %. Отже, міні-інвазивнівтручання не тільки доцільно, але й необхідно використовувати з урахуванням тяжкості захворювання, віку хворих,наявності супутньої патології; їх ефективність і перевага перед традиційними є очевидною

    Low-energy singlet and triplet excitations in the spin-liquid phase of the two-dimensional J1-J2 model

    Full text link
    We analyze the stability of the spontaneously dimerized spin-liquid phase of the frustrated Heisenberg antiferromagnet - the J1-J2 model. The lowest triplet excitation, corresponding to breaking of a singlet bond, is found to be stable in the region 0.38 < J2/J1 < 0.62. In addition we find a stable low-energy collective singlet mode, which is closely related to the spontaneous violation of the discrete symmetry. Both modes are gapped in the quantum disordered phase and become gapless at the transition point to the Neel ordered phase (J2/J1=0.38). The spontaneous dimerization vanishes at the transition and we argue that the disappearance of dimer order is related to the vanishing of the singlet gap. We also present exact diagonalization data on a small (4x4) cluster which indeed show a structure of the spectrum, consistent with that of a system with a four-fold degenerate (spontaneously dimerized) ground state.Comment: 4 pages, 4 figures, small changes, published versio

    Magnetic Impurity in the two-dimensional Heisenberg Antiferromagnet

    Full text link
    We analyze the ground state properties of the two-dimensional quantum antiferromagnet with a S=1/2 Kondo impurity. Perturbation theory around the strong Kondo coupling limit is developed and the results compared with studies, based on exact diagonalization of small clusters. We find that at intermediate coupling the impurity is partially screened and the magnetization locally suppressed. A local singlet between the impurity and the host spin is formed asymptotically.Comment: 12 REVTex pages, 4 Postscript figure

    Theoretical Aspects of the Fractional Quantum Hall Effect in Graphene

    Full text link
    We review the theoretical basis and understanding of electronic interactions in graphene Landau levels, in the limit of strong correlations. This limit occurs when inter-Landau-level excitations may be omitted because they belong to a high-energy sector, whereas the low-energy excitations only involve the same level, such that the kinetic energy (of the Landau level) is an unimportant constant. Two prominent effects emerge in this limit of strong electronic correlations: generalised quantum Hall ferromagnetic states that profit from the approximate four-fold spin-valley degeneracy of graphene's Landau levels and the fractional quantum Hall effect. Here, we discuss these effects in the framework of an SU(4)-symmetric theory, in comparison with available experimental observations.Comment: 12 pages, 3 figures; review for the proceedings of the Nobel Symposium on Graphene and Quantum Matte

    Active integrated antennas and arrays with field-effect transistors

    Get PDF
    Electromagnetic wave generation processes in the hybrid log-periodic microstripe antenna on the dielectric substrate integrated with field-effect transistor are experimentally studied in the frequency range of 6─20 GHz. The possibility of synchronization and power combining in the array consisting of antenna-coupled oscillators placed on the common dielectric substrate is investigated. It is shown that the considerable increasing the generation efficiency and power combining can be obtained by using the external synchronization signal or quasi-optical design of the array

    Spectrum of elementary and collective excitations in the dimerized S=1/2 Heisenberg chain with frustration

    Full text link
    We have studied the low-energy excitation spectrum of a dimerized and frustrated antiferromagnetic Heisenberg chain. We use an analytic approach, based on a description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. Additional singlet (S=0) and triplet (S=1) modes are found as two-particle bound states of the elementary triplets. We have also calculated the contributions of the elementary and collective excitations into the spin structure factor. Our results are in excellent agreement with exact diagonalizations and dimer series expansions data as long as the dimerization parameter δ\delta is not too small (δ>0.1\delta>0.1), i.e. while the elementary triplets can be treated as localized objects.Comment: 18 pages, 13 figure

    Excitation spectrum of the S=1/2 quantum spin ladder with frustration: elementary quasiparticles and many-particle bound states

    Full text link
    We study the excitation spectrum of the two-chain S=1/2 Heisenberg spin ladder with additional inter-chain second-neighbor frustrating interactions. The one and two-particle excitations are analyzed by using a mapping of the model onto a Bose gas of hard-core triplets. We find that low-lying singlet and triplet two-particle bound states are present and their binding energy increases with increasing frustration. In addition, many-particle bound states are found by a combination of variational and exact diagonalization techniques. We prove that the larger the number of bound quasiparticles the larger the binding energy. Thus the excitation spectrum has a complex structure and consists of elementary triplets and collective many-particle singlet and triplet excitations which generally mix with the elementary ones. The model exhibits a quantum phase transition from an antiferromagnetic ladder phase (small frustration) into Haldane phase (effectively ferromagnetic ladder for large frustration). We argue that near the transition point the spectrum in both triplet and singlet channels becomes gapless. The excitation wave function is dominated by large-size bound states which leads to the vanishing of the quasiparticle residue.Comment: RevTeX, 23 pages, 12 figure
    corecore