136 research outputs found

    Ion density of positive and negative ions at ambient pressure in air at 12-136 mm from 4.9 kV soft x-ray source

    Get PDF
    The abundance of ions is an essential parameter for ion mobility and mass spectrometry instrument design and for the control or optimization of chemical reactions with reactant ions. This information also advances the study of atmospheric pressure ion kinetics under continuous ionization, which has a role in developing trace level chemical analyzers. In this study, an ionization chamber is described to measure the abundance of ions produced by a 4.9 keV, model L12535, soft x-ray source from Hamamatsu Corporation. Ions of positive and negative polarity were measured independently in an 8 x 30 mm(2) cross section at distances of 12-136 mm at ambient air from an uncollimated beam. Ions were collected using electric fields and 16 sets of plates. The ion current decreased exponentially with distance from the source, and the calculated ion concentration varied between 1.0 x 10(8) and 3.8 x 10(5) ions cm(-3) on plates. A 2D-COMSOL model including losses by recombination and diffusion was favorably matched to changes in ion current intensity in the ionization chamber. Although the ionization chamber was built to characterize a commercial ion source, the design may be considered generally applicable to other x-ray sources. (C) 2021 Author(s).Peer reviewe

    Comparison of liquid chromatography-mass spectrometry and direct infusion microchip electrospray ionization mass spectrometry in global metabolomics of cell samples

    Get PDF
    In this study, the feasibility of direct infusion electrospray ionization microchip mass spectrometry (chip-MS) was compared to the commonly used liquid chromatography-mass spectrometry (LC-MS) in non-targeted metabolomics analysis of human foreskin fibroblasts (HFF) and human induced pluripotent stem cells (hiPSC) reprogrammed from HFF. The total number of the detected features with chip-MS and LC-MS were 619 and 1959, respectively. Approximately 25% of detected features showed statistically significant changes between the cell lines with both analytical methods. The results show that chip-MS is a rapid and simple method that allows high sample throughput from small sample volumes and can detect the main metabolites and classify cells based on their metabolic profiles. However, the selectivity of chip-MS is limited compared to LC-MS and chip-MS may suffer from ion suppression.Peer reviewe

    Enantioselective hyperporous molecularly imprinted thin film polymers

    Get PDF
    Significant enantioselective recognition has been achieved through the introduction of long range ordered and highly interconnected 300 nm diameter pores in molecularly imprinted polymer matrices.Peer reviewe

    Surface Assisted Laser Desorption/Ionization on Two-Layered Amorphous Silicon Coated Hybrid Nanostructures

    Get PDF
    Matrix-free laser desorption/ionization was studied on two-layered sample plates consisting of a substrate and a thin film coating. The effect of the substrate material was studied by depositing thin films of amorphous silicon on top of silicon, silica, polymeric photoresist SU-8, and an inorganic-organic hybrid. Des-arg9-bradykinin signal intensity was used to evaluate the sample plates. Silica and hybrid substrates were found to give superior signals compared with silicon and SU-8 because of thermal insulation and compatibility with amorphous silicon deposition process. The effect of surface topography was studied by growing amorphous silicon on hybrid micro- and nanostructures, as well as planar hybrid. Compared with planar sample plates, micro- and nanostructures gave weaker and stronger signals, respectively. Different coating materials were tested by growing different thin film coatings on the same substrate. Good signals were obtained from titania and amorphous silicon coated sample plates, but not from alumina coated, silicon nitride coated, or uncoated sample plates. Overall, the strongest signals were obtained from oxygen plasma treated and amorphous silicon coated inorganic-organic hybrid, which was tested for peptide-, protein-, and drug molecule analysis. Peptides and drugs were analyzed with little interference at low masses, subfemtomole detection levels were achieved for des-arg9-bradykinin, and the sample plates were also suitable for ionization of small proteins

    Parametric Sensitivity in a Generalized Model for Atmospheric Pressure Chemical Ionization Reactions

    Get PDF
    Gas phase reactions between hydrated protons H+(H2O)(n) and a substance M, as seen in atmospheric pressure chemical ionization (APCI) with mass spectrometry (MS) and ion mobility spectrometry (IMS), were modeled computationally using initial amounts of [M] and [H+(H2O)(n)], rate constants k(1) to form protonated monomer (MH+(H2O)(x)) and k(2) to form proton bound dimer (M2H+(H2O)(z)), and diffusion constants. At 1 x 10(10) cm(-3) (0.4 ppb) for [H+(H2O)(n)] and vapor concentrations for M from 10 ppb to 10 ppm, a maximum signal was reached at 4.5 mu s to 4.6 ms for MH+(H2O)(x) and 7.8 mu s to 46 ms for M2H+(H2O)(z). Maximum yield for protonated monomer for a reaction time of 1 ms was similar to 40% for k(1) from 10(-11) to 10(-8) cm(3).s(-1), for k(2)/k(1) = 0.8, and specific values of [M]. This model demonstrates that ion distributions could be shifted from [M2H+(H2O)(z)] to [MH+(H2O)(x)] using excessive levels of [H+(H2O)(n)], even for [M] > 10 ppb, as commonly found in APCI MS and IMS measurements. Ion losses by collisions on surfaces were insignificant with losses ofPeer reviewe

    A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry

    Get PDF
    Correction: Reaction Chemistry & Engineering, vol. 2:5, p. 811 DOI: 81110.1039/C7RE90018JA miniaturised polypropylene reactor was fabricated by 3D printing using fused deposition modeling. A stainless steel nanoelectrospray ionisation capillary and a magnetic stir bar were integrated into the reactor during the printing process. The integrated nanoelectrospray ionisation capillary allows direct sampling of a reaction solution without external pumping. It also allows ionisation of the analytes. Therefore, very rapid online mass spectrometric chemical reaction monitoring is possible. Operation of the miniaturised reactor is shown by the online nanoelectrospray mass spectrometry characterisation of a Diels–Alder reaction and the subsequent retro Diels–Alder reaction.Peer reviewe

    Machining of Aluminium with MHz High-Intensity Focused Ultrasound

    Get PDF
    Cavitation-induced surface erosion has been studied for decades. High-intensity focused ultrasound (HIFU) enables localized erosion, with applications in many fields. However, no research has been published on machining solely with HIFU. Compared to existing micro-machining technologies, HIFU exhibits a unique set of benefits: inexpensive, minimal maintenance due to non-contact machining without slurry, mitigated chemical load, and monitoring capability. We demonstrate controlled surface machining of mirror-polished aluminium (AW-5754) using high-frequency (12 MHz) HIFU-induced cavitation erosion. Optimal sonication parameters (transducer-sample distance, amplitude, cycles per burst, number of bursts, and pulse repetition frequency) for stationary surface erosion were first identified experimentally. These parameters served as a basis for studying the effect of sonication parameters during on-the-fly erosion, i.e., engraving lines. The effect of stage translation velocity and the number of repeated passes across the engraved line were also studied. Subsequently, the acronym of our laboratory, “ETLA”, was engraved, with a 500 ”m letter height and an average line width of 53 ”m.Peer reviewe

    Quantifying the Role of Transport by Acoustic Streaming in MHz Focused-Ultrasound-Based Surface Sampling

    Get PDF
    We have developed an ultrasound-based surface sampling method permitting surface studies for liquid immersed samples. The method employs high-intensity focused ultrasound, which can remove material from predetermined areas and induce acoustic streaming that causes the immersion liquid to flow. In this study, we studied several conditions of acoustic streaming, which can affect particle transport away from the sampled surface. First, we explored suitable acoustic streaming conditions by finite element modelling. Next, we measured the induced streaming fields by particle image velocimetry. This study comprised cases, when a high-intensity focused ultrasound beam encountered a solid surface at different transducer-surface distances. A change in direction of streaming occurred when a focusing transducer was moved from −2λ defocus to -4λ defocus (towards the surface). Thus, we found suitable conditions for an upwards directing acoustic streaming field. This kind of defocus condition can be coupled to the surface sampling process allowing efficient particle transport for subsequent chemical analysis.Peer reviewe

    Molecular Atlas of Postnatal Mouse Heart Development

    Get PDF
    Background The molecular mechanisms mediating postnatal loss of cardiac regeneration in mammals are not fully understood. We aimed to provide an integrated resource of mRNA, protein, and metabolite changes in the neonatal heart for identification of metabolism‐related mechanisms associated with cardiac regeneration. Methods and Results Methods and results Mouse ventricular tissue samples taken on postnatal day 1 (P01), P04, P09, and P23 were analyzed with RNA sequencing and global proteomics and metabolomics. Gene ontology analysis, KEGG pathway analysis, and fuzzy c‐means clustering were used to identify up‐ or downregulated biological processes and metabolic pathways on all 3 levels, and Ingenuity pathway analysis (Qiagen) was used to identify upstream regulators. Differential expression was observed for 8547 mRNAs and for 1199 of 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Differentially regulated metabolic pathways include branched chain amino acid degradation (upregulated at P23), fatty acid metabolism (upregulated at P04 and P09; downregulated at P23) as well as the HMGCS (HMG‐CoA [hydroxymethylglutaryl‐coenzyme A] synthase)–mediated mevalonate pathway and ketogenesis (transiently activated). Pharmacological inhibition of HMGCS in primary neonatal cardiomyocytes reduced the percentage of BrdU‐positive cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating the cardiomyocyte cell cycle. Conclusions This study is the first systems‐level resource combining data from genomewide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses in the mouse heart throughout the early postnatal period. These integrated data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapiesPeer reviewe
    • 

    corecore